Wavelets and Coherent States

S. Twareque Ali

Department of Mathematics and Statistics
Concordia University
Montréal, Québec, CANADA H3G 1M8

stali@mathstat.concordia.ca

Palermo

Jan.14, 2010
Abstract

The aim of this lecture is to construct coherent states of the affine group. These coherent states are called wavelets in the signal analysis literature and form the basis of much of modern digital data analysis. Let us note that in the signal analysis literature, the canonical coherent states are known as gaborettes or Gabor wavelets.
Abstract

*The aim of this lecture is to construct coherent states of the affine group. These coherent states are called wavelets in the signal analysis literature and form the basis of much of modern digital data analysis. Let us note that in the signal analysis literature, the canonical coherent states are known as gaborettes or Gabor wavelets. Although this talk is meant to illustrate the theory of coherent states and wavelets by an example, I have tried to make it completely self contained. In particular, no specific group theoretical knowledge is presumed, since everything can (at least in this example) be developed from first principles.*
Contents

Preliminaries
  Contents
  References

References
Preliminaries

The group theoretic meaning of wavelets

The one-dimensional affine group and wavelets

Phase space analysis and holomorphic wavelet transforms

Contents

References

The group theoretic meaning of wavelets
Contents

Preliminaries

The group theoretic meaning of wavelets

The one-dimensional affine group and wavelets

Phase space analysis and holomorphic wavelet transforms

References
Contents

Preliminaries

The group theoretic meaning of wavelets
The one-dimensional affine group and wavelets
Phase space analysis and holomorphic wavelet transforms

References
References


Wavelets as coherent states

The continuous wavelet transform, as presently used extensively in signal analysis and image processing, is a joint time frequency transform. This is in sharp contrast to the Fourier transform, which can be used either to analyze the frequency content of a signal, or its time profile, but not both at the same time.
Wavelets as coherent states

The continuous wavelet transform, as presently used extensively in signal analysis and image processing, is a joint time frequency transform. This is in sharp contrast to the Fourier transform, which can be used either to analyze the frequency content of a signal, or its time profile, but not both at the same time. Interestingly, the continuous wavelet transform is built out of the coherent states obtained from a representation of the one-dimensional affine group, a group of translations and dilations of the real line. This group is also one of the simplest examples of a group which has a square integrable representation.
Wavelets as coherent states

The continuous wavelet transform, as presently used extensively in signal analysis and image processing, is a joint time frequency transform. This is in sharp contrast to the Fourier transform, which can be used either to analyze the frequency content of a signal, or its time profile, but not both at the same time. Interestingly, the continuous wavelet transform is built out of the coherent states obtained from a representation of the one-dimensional affine group, a group of translations and dilations of the real line. This group is also one of the simplest examples of a group which has a square integrable representation. So what follows will be a straightforward application of the theory just developed to this simple, but highly practical situation.
Wavelets as coherent states

The continuous wavelet transform, as presently used extensively in signal analysis and image processing, is a joint time frequency transform. This is in sharp contrast to the Fourier transform, which can be used either to analyze the frequency content of a signal, or its time profile, but not both at the same time. Interestingly, the continuous wavelet transform is built out of the coherent states obtained from a representation of the one-dimensional affine group, a group of translations and dilations of the real line. This group is also one of the simplest examples of a group which has a square integrable representation. So what follows will be a straightforward application of the theory just developed to this simple, but highly practical situation.

We ought to point out, however, that in actual practice, for computational purposes, one uses a discretized version of the transform that we shall obtain here. But the advantage of working with the continuous wavelet transform is that starting with it, one can obtain many more than one discrete transform.
Wavelets as coherent states

For our purposes, we shall identify a signal with an element $f \in L^2(\mathbb{R}, dx)$. Its $L^2$-norm squared, $\|f\|^2$, will be identified with the energy of the signal.
Wavelets as coherent states

For our purposes, we shall identify a signal with an element \( f \in L^2(\mathbb{R}, dx) \). Its \( L^2 \)-norm squared, \( \| f \|^2 \), will be identified with the energy of the signal. Consequently, the wavelet transform will be built out of a single element \( \psi \in L^2(\mathbb{R}, dx) \) and it will have to be an admissible vector in the sense of square-integrable representations. In the signal analysis literature, such a vector is called a mother wavelet.
For our purposes, we shall identify a **signal** with an element $f \in L^2(\mathbb{R}, dx)$. Its $L^2$-norm squared, $\|f\|^2$, will be identified with the energy of the signal. Consequently, the wavelet transform will be built out of a single element $\psi \in L^2(\mathbb{R}, dx)$ and it will have to be an admissible vector in the sense of square-integrable representations. In the signal analysis literature, such a vector is called a **mother wavelet**.

The resulting resolution of the identity will enable us to **reconstruct the signal** from its wavelet, i.e., its joint time frequency, transform.
Wavelets as coherent states

For our purposes, we shall identify a signal with an element $f \in L^2(\mathbb{R}, dx)$. Its $L^2$-norm squared, $\|f\|^2$, will be identified with the energy of the signal. Consequently, the wavelet transform will be built out of a single element $\psi \in L^2(\mathbb{R}, dx)$ and it will have to be an admissible vector in the sense of square-integrable representations. In the signal analysis literature, such a vector is called a mother wavelet.

The resulting resolution of the identity will enable us to reconstruct the signal from its wavelet, i.e., its joint time frequency, transform. The orthogonality relations then allow one to decompose an arbitrary time frequency transform into orthogonal sums of wavelet transforms, corresponding to different mother wavelets.
Wavelets as coherent states

For our purposes, we shall identify a signal with an element $f \in L^2(\mathbb{R}, dx)$. Its $L^2$-norm squared, $\|f\|^2$, will be identified with the energy of the signal. Consequently, the wavelet transform will be built out of a single element $\psi \in L^2(\mathbb{R}, dx)$ and it will have to be an admissible vector in the sense of square-integrable representations. In the signal analysis literature, such a vector is called a mother wavelet.

The resulting resolution of the identity will enable us to reconstruct the signal from its wavelet, i.e., its joint time frequency transform. The orthogonality relations then allow one to decompose an arbitrary time frequency transform into orthogonal sums of wavelet transforms, corresponding to different mother wavelets.

We shall also be able to choose a mother wavelet in a way such that the resulting wavelet transform consists of holomorphic functions in a certain Hardy space.
Transformations on signals

Let $\psi \in L^2(\mathbb{R}, dx)$ and consider start the basic 1-D transformation:

$$\psi(x) \mapsto \psi_{b,a}(x) = |a|^{-1/2} \psi \left( \frac{x - b}{a} \right), \quad b \in \mathbb{R}, \ a \neq 0,$$
Transformations on signals

Let $\psi \in L^2(\mathbb{R}, dx)$ and consider start the basic 1-D transformation:

$$\psi(x) \mapsto \psi_{b,a}(x) = |a|^{-1/2} \psi \left( \frac{x - b}{a} \right), \quad b \in \mathbb{R}, \ a \neq 0,$$

and rewrite it in the form

$$\psi_{b,a}(x) = |a|^{-1/2} \psi \left( (b, a)^{-1} x \right),$$
Transformations on signals

Let \( \psi \in L^2(\mathbb{R}, dx) \) and consider start the basic 1-D transformation:

\[
\psi(x) \mapsto \psi_{b,a}(x) = |a|^{-1/2} \psi \left( \frac{x - b}{a} \right), \quad b \in \mathbb{R}, \ a \neq 0,
\]

and rewrite it in the form

\[
\psi_{b,a}(x) = |a|^{-1/2} \psi \left( (b, a)^{-1} x \right),
\]

where we have introduced the affine transformation of the line, consisting of a dilation (or scaling) by \( a \neq 0 \) and a (rigid) translation by \( b \in \mathbb{R} \):

\[
x = (b, a)y = ay + b,
\]
Transformations on signals

Let $\psi \in L^2(\mathbb{R}, dx)$ and consider start the basic 1-D transformation:

$$\psi(x) \mapsto \psi_{b,a}(x) = |a|^{-1/2} \psi \left( \frac{x - b}{a} \right), \quad b \in \mathbb{R}, \ a \neq 0,$$

and rewrite it in the form

$$\psi_{b,a}(x) = |a|^{-1/2} \psi \left( (b, a)^{-1} x \right),$$

where we have introduced the affine transformation of the line, consisting of a
dilation (or scaling) by $a \neq 0$ and a (rigid) translation by $b \in \mathbb{R}$:

$$x = (b, a)y = ay + b,$$

and its inverse

$$y = (b, a)^{-1} x = \frac{x - b}{a}.$$
Transformations on signals

Writing $\phi = \psi_{b,a}$ and making a second transformation on $\phi$ we get

$$
\phi(x) \mapsto \phi_{b',a'}(x) = \left| a' \right|^{-\frac{1}{2}} \phi((b', a')^{-1} x)
$$

$$
= \left| aa' \right|^{-\frac{1}{2}} \psi((b', a')^{-1} (b, a)^{-1} x)
$$

$$
= \left| aa' \right|^{-\frac{1}{2}} \psi \left( \frac{x - (b + ab')}{aa'} \right).
$$
Transformations on signals

Writing $\phi = \psi_{b,a}$ and making a second transformation on $\phi$ we get

$$
\phi(x) \mapsto \phi_{b',a'}(x) = |a'|^{-\frac{1}{2}} \phi((b', a')^{-1}x)
= |aa'|^{-\frac{1}{2}} \psi((b', a')^{-1}(b, a)^{-1}x)
= |aa'|^{-\frac{1}{2}} \psi \left( \frac{x - (b + ab')}{aa'} \right).
$$

Thus, the effect of two successive transformations is captured in the composition rule

$$(b, a)(b', a') = (b + ab', aa'),$$
Transformations on signals

Writing $\phi = \psi_{b,a}$ and making a second transformation on $\phi$ we get

$$
\phi(x) \mapsto \phi_{b',a'}(x) = |a'|^{-1/2} \psi((b', a')^{-1}x) \\
= |aa'|^{-1/2} \psi((b', a')^{-1}(b, a)^{-1}x) \\
= |aa'|^{-1/2} \psi \left( \frac{x - (b + ab')}{aa'} \right).
$$

Thus, the effect of two successive transformations is captured in the composition rule

$$(b, a)(b', a') = (b + ab', aa'),$$

which, if we represent these transformations by $2 \times 2$ matrices of the type

$$(b, a) \equiv \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, \quad a \neq 0, \quad b \in \mathbb{R},$$
The 1-D affine group

is reproduced by ordinary matrix multiplication.
The 1-D affine group

is reproduced by ordinary matrix multiplication. The point to be noted about these matrices is that the product of two of them is again a matrix of the same type and so also is the inverse,

\[(b, a)^{-1} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} a^{-1} & -a^{-1}b \\ 0 & 1 \end{pmatrix}\]

of such a matrix.
The 1-D affine group

is reproduced by ordinary matrix multiplication. The point to be noted about these matrices is that the product of two of them is again a matrix of the same type and so also is the inverse,

\[(b, a)^{-1} = \left( \begin{array}{cc} a & b \\ 0 & 1 \end{array} \right)^{-1} = \left( \begin{array}{cc} a^{-1} & -a^{-1}b \\ 0 & 1 \end{array} \right)\]

of such a matrix. Furthermore, the $2 \times 2$ identity matrix is also in this class. In other words, this class of matrices constitute a group, called the (full) affine group and denoted $G_{\text{aff}}$. 
The one-dimensional affine group and wavelets

The point to be noted about these matrices is that the product of two of them is again a matrix of the same type and so also is the inverse,

\[(b, a)^{-1} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} a^{-1} & -a^{-1}b \\ 0 & 1 \end{pmatrix}\]

of such a matrix. Furthermore, the 2 × 2 identity matrix is also in this class. In other words, this class of matrices constitute a group, called the (full) affine group and denoted \(G_{\text{aff}}\). Note also, that if we consider only those matrices in for which \(a > 0\), then this set is a subgroup of \(G_{\text{aff}}\), denoted \(G_{\text{aff}}^+\).
The 1-D affine group

is reproduced by ordinary matrix multiplication. The point to be noted about these matrices is that the product of two of them is again a matrix of the same type and so also is the inverse,

\[
(b, a)^{-1} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} a^{-1} & -a^{-1}b \\ 0 & 1 \end{pmatrix}
\]

of such a matrix. Furthermore, the 2 × 2 identity matrix is also in this class. In other words, this class of matrices constitute a group, called the (full) affine group and denoted \( G_{\text{aff}} \). Note also, that if we consider only those matrices in for which \( a > 0 \), then this set is a subgroup of \( G_{\text{aff}} \), denoted \( G_{\text{aff}}^+ \). From the action on signals, we observe that \( G_{\text{aff}} \) or \( G_{\text{aff}}^+ \) consists precisely of the transformations we apply to a signal: translation (time-shift) by an amount \( b \) and zooming in or out by the factor \( a \). Hence, the group \( G_{\text{aff}} \) relates to the geometry of the signals.
A representation of the group

Next let us study the effect of the transformation given by the group element $(b, a)$ on the signal itself.
A representation of the group

Next let us study the effect of the transformation given by the group element $(b, a)$ on the signal itself. Writing,

$$\psi \mapsto U(b, a)\psi \equiv \psi_{b,a},$$

we may interpret $U(b, a)$ as a linear operator on the space $L^2(\mathbb{R}, dx)$ of finite energy signals, with the explicit action,
A representation of the group

Next let us study the effect of the transformation given by the group element $(b, a)$ on the signal itself. Writing,

$$\psi \mapsto U(b, a)\psi \equiv \psi_{b,a},$$

we may interpret $U(b, a)$ as a linear operator on the space $L^2(\mathbb{R}, dx)$ of finite energy signals, with the explicit action,

$$(U(b, a)\psi)(x) = |a|^{-1/2} \psi \left( \frac{x - b}{a} \right).$$
A representation of the group

Next let us study the effect of the transformation given by the group element $(b, a)$ on the signal itself. Writing,

$$\psi \mapsto U(b, a)\psi \equiv \psi_{b,a},$$

we may interpret $U(b, a)$ as a linear operator on the space $L^2(\mathbb{R}, dx)$ of finite energy signals, with the explicit action,

$$(U(b, a)\psi)(x) = |a|^{-1/2} \psi \left( \frac{x - b}{a} \right).$$

Additionally, for each $(b, a)$, the operator $U(b, a)$ is unitary, i.e., it preserves the Hilbert space norm of the signal:

$$\|\psi_{b,a}\|^2 = \|\psi\|^2 = \int_{-\infty}^{\infty} dx \ |\psi(x)|^2.$$
A representation of the group

More interestingly, the association, \((b, a) \mapsto U(b, a)\) is a group homomorphism, preserving all the group properties. Indeed, the following relations are easily verified:

\[
U(b, a)U(b', a') = U(b + ab', aa')
\]

\[
U((b, a)^{-1}) = U(b, a)^{-1} = U(b, a)^\dagger
\]

\[
U(e) = I, \quad \text{with} \quad e = (0, 1), \quad \text{the unit element.}
\]
A representation of the group

More interestingly, the association, \((b, a) \mapsto U(b, a)\) is a group homomorphism, preserving all the group properties. Indeed, the following relations are easily verified:

\[
U(b, a)U(b', a') = U(b + ab', aa')
\]

\[
U((b, a)^{-1}) = U(b, a)^{-1} = U(b, a)^\dagger
\]

\[
U(e) = I, \text{ with } e = (0, 1), \text{ the unit element.}
\]

We say that the association \((b, a) \mapsto U(b, a)\) provides us with a unitary representation of \(G_{\text{aff}}\). Note that we may also write,

\[
U(b, a) = T_b D_a,
\]
A representation of the group

More interestingly, the association, \((b, a) \mapsto U(b, a)\) is a group homomorphism, preserving all the group properties. Indeed, the following relations are easily verified:

\[
U(b, a)U(b', a') = U(b + ab', aa') \\
U((b, a)^{-1}) = U(b, a)^{-1} = U(b, a)^\dagger \\
U(e) = I, \text{ with } e = (0, 1), \text{ the unit element.}
\]

We say that the association \((b, a) \mapsto U(b, a)\) provides us with a unitary representation of \(G_{\text{aff}}\). Note that we may also write,

\[
U(b, a) = T_b D_a ,
\]

where \(T_a, D_b\) are the well known shift and dilation operators, familiar from standard time-frequency analysis:

\[
(T_b s)(x) = s(x - b) , \quad (D_a s)(x) = |a|^{-\frac{1}{2}} s(a^{-1}x) .
\]
A representation of the group

We shall see later that the representation $U(b, a)$ is in a sense minimal or irreducible, in that the entire Hilbert space of finite energy signals $L^2(\mathbb{R}, dx)$ is needed to realize it completely.
A representation of the group

We shall see later that the representation $U(b, a)$ is in a sense minimal or irreducible, in that the entire Hilbert space of finite energy signals $L^2(\mathbb{R}, dx)$ is needed to realize it completely.

But let us first attend to another question which is pertinent here, namely, why is it that $G_{\text{aff}}$ is made to act as a transformation group on $\mathbb{R}$ even without manifestly identifying $\mathbb{R}$ with any set of signal parameters?
A representation of the group

We shall see later that the representation $U(b, a)$ is in a sense minimal or irreducible, in that the entire Hilbert space of finite energy signals $L^2(\mathbb{R}, dx)$ is needed to realize it completely.

But let us first attend to another question which is pertinent here, namely, why is it that $G_{aff}$ is made to act as a transformation group on $\mathbb{R}$ even without manifestly identifying $\mathbb{R}$ with any set of signal parameters?

The answer to the above question lies in realizing that this space is intrinsic to the group itself. Indeed, let us factor an element $(b, a) \in G_{aff}$ in the manner

$$(b, a) = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix},$$
A representation of the group

We shall see later that the representation $U(b, a)$ is in a sense minimal or irreducible, in that the entire Hilbert space of finite energy signals $L^2(\mathbb{R}, dx)$ is needed to realize it completely.

But let us first attend to another question which is pertinent here, namely, why is it that $G_{\text{aff}}$ is made to act as a transformation group on $\mathbb{R}$ even without manifestly identifying $\mathbb{R}$ with any set of signal parameters?

The answer to the above question lies in realizing that this space is intrinsic to the group itself. Indeed, let us factor an element $(b, a) \in G_{\text{aff}}$ in the manner

$$(b, a) = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix},$$

and note that the first matrix on the right hand side of this equation basically represents a point in $\mathbb{R}$. We also note that the set of matrices of the type appearing in the second term of the above product is a subgroup of $G_{\text{aff}}$. 
A representation of the group

Dividing out by this matrix, we get $(b, a)(0, a)^{-1} = (b, 0)$, which enables us to identify the point $b \in \mathbb{R}$ with an element of the quotient space $G_{\text{aff}}/H$, (where $H$ is the subgroup of matrices $(0, a), \ a \neq 0$).
A representation of the group

Dividing out by this matrix, we get \((b, a)(0, a)^{-1} = (b, 0)\), which enables us to identify the point \(b \in \mathbb{R}\) with an element of the quotient space \(G_{\text{aff}}/H\), (where \(H\) is the subgroup of matrices \((0, a),\ a \neq 0\)). Next we see that, since

\[
\begin{pmatrix}
a & b \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & x \\
0 & 1
\end{pmatrix}
= \begin{pmatrix}
a & ax + b \\
0 & 1
\end{pmatrix}
= \begin{pmatrix}
1 & ax + b \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
a & 0 \\
0 & 1
\end{pmatrix},
\]

\]
A representation of the group

Dividing out by this matrix, we get \((b, a)(0, a)^{-1} = (b, 0)\), which enables us to identify the point \(b \in \mathbb{R}\) with an element of the quotient space \(G_{\text{aff}}/H\), (where \(H\) is the subgroup of matrices \((0, a), a \neq 0\).) Next we see that, since

\[
\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & ax + b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & ax + b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix},
\]

the action of the group \(G_{\text{aff}}\) on its quotient space \(G_{\text{aff}}/H\) is exactly the same as its action on \(\mathbb{R}\) as given earlier. Thus, the parameter space \(\mathbb{R}\) on which the signals \(\psi(x)\) are defined is a quotient space of the group and hence intrinsic to the set of signal symmetries.
A representation of the group

Dividing out by this matrix, we get \((b, a)(0, a)^{-1} = (b, 0)\), which enables us to identify the point \(b \in \mathbb{R}\) with an element of the quotient space \(G_{\text{aff}}/H\), (where \(H\) is the subgroup of matrices \((0, a), a \neq 0\)). Next we see that, since

\[
\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & ax + b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & ax + b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix},
\]

the action of the group \(G_{\text{aff}}\) on its quotient space \(G_{\text{aff}}/H\) is exactly the same as its action on \(\mathbb{R}\) as given earlier. Thus, the parameter space \(\mathbb{R}\) on which the signals \(\psi(x)\) are defined is a quotient space of the group and hence intrinsic to the set of signal symmetries.

We shall see below that the parameter space on which the wavelet transform of \(\psi\) is defined can also be identified with a quotient space of the group. In fact this space will turn out to be a phase space, in a sense to be specified later.
A representation of the group

Dividing out by this matrix, we get \((b, a)(0, a)^{-1} = (b, 0)\), which enables us to identify the point \(b \in \mathbb{R}\) with an element of the quotient space \(G_{\text{aff}}/H\), (where \(H\) is the subgroup of matrices \((0, a), \ a \neq 0\)). Next we see that, since

\[
\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & ax + b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & ax + b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix},
\]

the action of the group \(G_{\text{aff}}\) on its quotient space \(G_{\text{aff}}/H\) is exactly the same as its action on \(\mathbb{R}\) as given earlier. Thus, the parameter space \(\mathbb{R}\) on which the signals \(\psi(x)\) are defined is a quotient space of the group and hence intrinsic to the set of signal symmetries.

We shall see below that the parameter space on which the wavelet transform of \(\psi\) is defined can also be identified with a quotient space of the group. In fact this space will turn out to be a phase space, in a sense to be specified later.

Let us re-emphasize that the group (of signal symmetries) is determinative of all aspects of the signal and its various transforms.
A representation of the group

We come back now to the point made earlier, that the representation \( U(b, a) \) is irreducible.
A representation of the group

We come back now to the point made earlier, that the representation $U(b, a)$ is irreducible.

We shall see that it also enjoys a second crucial property, that of being square integrable.
We come back now to the point made earlier, that the representation $U(b, a)$ is irreducible.

We shall see that it also enjoys a second crucial property, that of being square integrable.

The group $G_{aff}$ has a natural action on itself (by matrix multiplication from the left), according to which for a given $(b_0, a_0) \in G_{aff}$, a general point $(b, a) \in G_{aff}$ is mapped to $(b', a') = (b_0, a_0)(b, a) = (b_0 + a_0 b, a_0 a)$. 

A representation of the group
A representation of the group

We come back now to the point made earlier, that the representation $U(b, a)$ is irreducible.

We shall see that it also enjoys a second crucial property, that of being square integrable.

The group $G_{aff}$ has a natural action on itself (by matrix multiplication from the left), according to which for a given $(b_0, a_0) \in G_{aff}$, a general point $(b, a) \in G_{aff}$ is mapped to $(b', a') = (b_0, a_0)(b, a) = (b_0 + a_0b, a_0a)$.

It is not hard to see that the measure

$$d\mu(b, a) = \frac{db \ da}{a^2},$$

is invariant under this action:
A representation of the group

We come back now to the point made earlier, that the representation $U(b,a)$ is irreducible. We shall see that it also enjoys a second crucial property, that of being square integrable.

The group $G_{\text{aff}}$ has a natural action on itself (by matrix multiplication from the left), according to which for a given $(b_0, a_0) \in G_{\text{aff}}$, a general point $(b, a) \in G_{\text{aff}}$ is mapped to $(b', a') = (b_0, a_0)(b, a) = (b_0 + a_0 b, a_0 a)$.

It is not hard to see that the measure

$$d\mu(b, a) = \frac{db \, da}{a^2},$$

is invariant under this action:

$$\frac{db \, da}{a^2} = \frac{db' \, da'}{a'^2}.$$  

We call the measure $d\mu$ the left Haar measure of $G_{\text{aff}}$.  

Square integrability, admissibility and irreducibility

In a similar manner we could obtain a right Haar measure $d\mu_r$ (invariant under right multiplication):

$$d\mu_r(b, a) = a^{-1} \, db \, da .$$
Square integrability, admissibility and irreducibility

In a similar manner we could obtain a right Haar measure $d\mu_r$ (invariant under right multiplication):

$$d\mu_r(b, a) = a^{-1} \, db \, da .$$

It is important to realize, that while these two measures are (measure theoretically) equivalent, they are not the same measure.
Square integrability, admissibility and irreducibility

In a similar manner we could obtain a right Haar measure $d\mu_r$ (invariant under right multiplication):

$$d\mu_r(b, a) = a^{-1} \, db \, da .$$

It is important to realize, that while these two measures are (measure theoretically) equivalent, they are not the same measure. The function $\Delta(b, a) = a^{-1}$, for which $d\mu(b, a) = \Delta(b, a) \, d\mu_r(b, a)$, is called the modular function of the group.
Square integrability, admissibility and irreducibility

In a similar manner we could obtain a right Haar measure $d\mu_r$ (invariant under right multiplication):

$$d\mu_r(b, a) = a^{-1} \, db \, da .$$

It is important to realize, that while these two measures are (measure theoretically) equivalent, they are not the same measure.

The function $\Delta(b, a) = a^{-1}$, for which $d\mu(b, a) = \Delta(b, a) \, d\mu_r(b, a)$, is called the modular function of the group.

The square-integrability of the representation $U(b, a)$ now means that there exist signals $\psi \in L^2(\mathbb{R}, \, dx)$ for which the matrix element $\langle U(b, a)\psi | \psi \rangle$ is square integrable as a function of the variables $b, a$, with respect to the left Haar measure $d\mu$, i.e.,

$$\int\int_{G_{aff}} d\mu(b, a) \, |\langle U(b, a)\psi | \psi \rangle|^2 < \infty ,$$
Square integrability, admissibility and irreducibility

and a straightforward computation would then establish that the function is also square integrable with respect to the right Haar measure.
Square integrability, admissibility and irreducibility

and a straightforward computation would then establish that the function is also square integrable with respect to the right Haar measure. Also, it is a fact that the existence of one such (nonzero) vector implies the existence of an entire dense set of them. Indeed, the condition for a signal to be of this type is precisely the condition of admissibility required of mother wavelets.
and a straightforward computation would then establish that the function is also square integrable with respect to the right Haar measure. Also, it is a fact that the existence of one such (nonzero) vector implies the existence of an entire dense set of them. Indeed, the condition for a signal to be of this type is precisely the condition of admissibility required of mother wavelets.

To derive the admissibility condition, and also to verify our claim of irreducibility of the representation $U(a, b)$, it will be convenient to go over to the Fourier domain. For $\psi \in L^2(\mathbb{R}, dx)$, we denote its Fourier transform by $\hat{\psi}$. 
Square integrability, admissibility and irreducibility

and a straightforward computation would then establish that the function is also square integrable with respect to the right Haar measure.

Also, it is a fact that the existence of one such (nonzero) vector implies the existence of an entire dense set of them. Indeed, the condition for a signal to be of this type is precisely the condition of admissibility required of mother wavelets.

To derive the admissibility condition, and also to verify our claim of irreducibility of the representation $U(a, b)$, it will be convenient to go over to the Fourier domain. For $\psi \in L^2(\mathbb{R}, dx)$, we denote its Fourier transform by $\hat{\psi}$.

It is not hard to see that on the Fourier transformed space the unitary operator $U(b, a)$ transforms to $\hat{U}(b, a)$, with explicit action,

$$\left(\hat{U}(b, a)\hat{\psi}\right)(\xi) = |a|^{1/2} \hat{\psi}(a\xi)e^{-ib\xi} \quad (b \in \mathbb{R}, a \neq 0).$$
The Fourier transform is a linear isometry, and we denote by $L^2(\hat{\mathbb{R}}, d\xi)$ the image of $L^2(\mathbb{R}, dx)$ under this map.
Square integrability, admissibility and irreducibility

The Fourier transform is a linear isometry, and we denote by $L^2(\hat{\mathbb{R}}, d\xi)$ the image of $L^2(\mathbb{R}, dx)$ under this map. It follows that the operators $\hat{U}(b, a)$ are also unitary and that they again constitute a unitary representation of the group $G_{\text{aff}}$. 

S. Twareque Ali
Wavelets and Coherent States
Square integrability, admissibility and irreducibility

The Fourier transform is a linear isometry, and we denote by $L^2(\mathbb{R}, d\xi)$ the image of $L^2(\mathbb{R}, dx)$ under this map.

It follows that the operators $\hat{U}(b, a)$ are also unitary and that they again constitute a unitary representation of the group $G_{\text{aff}}$.

Let $\hat{\psi} \in L^2(\mathbb{R}, d\xi)$ be a fixed nonzero vector in the Fourier domain. We will now show that the set of all vectors $\hat{U}(b, a)\hat{\psi}$ as $(b, a)$ runs through $G_{\text{aff}}$ is dense in $L^2(\mathbb{R}, d\xi)$ and this is what will constitute the mathematically precise statement of the irreducibility of $\hat{U}$.
The Fourier transform is a linear isometry, and we denote by $L^2(\hat{\mathbb{R}}, d\xi)$ the image of $L^2(\mathbb{R}, dx)$ under this map.

It follows that the operators $\hat{U}(b, a)$ are also unitary and that they again constitute a unitary representation of the group $G_{\text{aff}}$.

Let $\hat{\psi} \in L^2(\hat{\mathbb{R}}, d\xi)$ be a fixed nonzero vector in the Fourier domain. We will now show that the set of all vectors $\hat{U}(b, a)\hat{\psi}$ as $(b, a)$ runs through $G_{\text{aff}}$ is dense in $L^2(\hat{\mathbb{R}}, d\xi)$ and this is what will constitute the mathematically precise statement of the irreducibility of $\hat{U}$.

Indeed, let $\hat{\chi} \in L^2(\hat{\mathbb{R}}, d\xi)$ be a vector which is orthogonal to all the vectors $\hat{U}(b, a)\hat{\psi}$:

$$\langle \hat{\chi} | \hat{U}(b, a)\hat{\psi} \rangle = 0.$$ 

Then,

$$\langle \hat{\chi} | \hat{U}(b, a)\hat{\psi} \rangle = |a|^{1/2} \int_{-\infty}^{\infty} d\xi \overline{\hat{\chi}(\xi)} \hat{\psi}(a\xi) e^{-ib\xi} = 0.$$
Square integrability, admissibility and irreducibility

By the unitarity of the Fourier transform, this yields \( \overline{\chi}(\xi) \hat{\psi}(a\xi) = 0 \), almost everywhere, for all \( a \neq 0 \). Since \( \hat{\psi} \neq 0 \), this in turn implies \( \hat{\chi}(\xi) = 0 \), almost everywhere.
Square integrability, admissibility and irreducibility

By the unitarity of the Fourier transform, this yields \( \hat{\chi}(\xi) \hat{\psi}(a\xi) = 0 \), almost everywhere, for all \( a \neq 0 \). Since \( \hat{\psi} \neq 0 \), this in turn implies \( \hat{\chi}(\xi) = 0 \), almost everywhere.

Thus, the only subspaces of \( L^2(\hat{\mathbb{R}}, d\xi) \) which are stable under the action of all the operators \( \hat{U}(b, a) \) are \( L^2(\hat{\mathbb{R}}, d\xi) \) itself and the trivial subspace containing just the zero vector.
By the unitarity of the Fourier transform, this yields $\hat{\chi}(\xi) \hat{\psi}(a\xi) = 0$, almost everywhere, for all $a \neq 0$. Since $\hat{\psi} \neq 0$, this in turn implies $\hat{\chi}(\xi) = 0$, almost everywhere.

Thus, the only subspaces of $L^2(\mathbb{R}, d\xi)$ which are stable under the action of all the operators $\hat{U}(b, a)$ are $L^2(\mathbb{R}, d\xi)$ itself and the trivial subspace containing just the zero vector.

In other words, $L^2(\mathbb{R}, d\xi)$ is sort of a **minimal space for the representation.**
Square integrability, admissibility and irreducibility

By the unitarity of the Fourier transform, this yields $\hat{\chi}(\xi) \hat{\psi}(a\xi) = 0$, almost everywhere, for all $a \neq 0$. Since $\hat{\psi} \neq 0$, this in turn implies $\hat{\chi}(\xi) = 0$, almost everywhere.

Thus, the only subspaces of $L^2(\hat{\mathbb{R}}, d\xi)$ which are stable under the action of all the operators $\hat{U}(b, a)$ are $L^2(\hat{\mathbb{R}}, d\xi)$ itself and the trivial subspace containing just the zero vector.

In other words, $L^2(\hat{\mathbb{R}}, d\xi)$ is sort of a minimal space for the representation. The unitarity of the Fourier transform also tells us that the representations $U(b, a)$ and $\hat{U}(b, a)$ are equivalent and since $\hat{U}(b, a)$ is irreducible, so also is $U(b, a)$. 
Square integrability, admissibility and irreducibility

By the unitarity of the Fourier transform, this yields $\hat{\chi}(\xi) \hat{\psi}(a\xi) = 0$, almost everywhere, for all $a \neq 0$. Since $\hat{\psi} \neq 0$, this in turn implies $\hat{\chi}(\xi) = 0$, almost everywhere.

Thus, the only subspaces of $L^2(\mathbb{R}, d\xi)$ which are stable under the action of all the operators $\hat{U}(b, a)$ are $L^2(\mathbb{R}, d\xi)$ itself and the trivial subspace containing just the zero vector.

In other words, $L^2(\mathbb{R}, d\xi)$ is sort of a minimal space for the representation. The unitarity of the Fourier transform also tells us that the representations $U(b, a)$ and $\hat{U}(b, a)$ are equivalent and since $\hat{U}(b, a)$ is irreducible, so also is $U(b, a)$.

(Note, this is also clear from the fact that the linear isometry property of the Fourier transform implies that

$$\langle \chi | U(b, a)\psi \rangle = \langle \hat{\chi} | \hat{U}(b, a)\hat{\psi} \rangle,$$

$\chi, \psi$ denoting the inverse Fourier transforms of $\hat{\chi}, \hat{\psi}$, respectively.)
Now we address the question of square integrability. We require that,

\[
\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{da \, db}{a^2} \left| \langle \hat{U}(b, a) \hat{\psi} | \hat{\psi} \rangle \right|^2 =
\]

\[
= \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{da}{|a|} \, d\xi \, d\xi' \, e^{ib(\xi - \xi')} \hat{\psi}(a\xi) \hat{\psi}(a\xi') \hat{\psi}(\xi) \hat{\psi}(\xi')
\]

\[
= 2\pi \int_{\mathbb{R}} \frac{da}{|a|} \, d\xi \, |\hat{\psi}(a\xi)|^2 |\hat{\psi}(\xi)|^2
\]

\[
= 2\pi \|\psi\|^2 \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} |\hat{\psi}(\xi)|^2 < \infty
\]
Square integrability, admissibility and irreducibility

Now we address the question of square integrability. We require that,

\[
\iint_{G_{\text{aff}}} \frac{da \, db}{a^2} |\langle \hat{U}(b, a)\hat{\psi} | \hat{\psi} \rangle|^2 =
\]

\[
= \iint d\xi \, d\xi' \frac{da}{|a|} \, db \, e^{ib(\xi - \xi')} \hat{\psi}(a\xi) \hat{\psi}(a\xi') \hat{\psi}(\xi) \hat{\psi}(\xi')
\]

\[
= 2\pi \iint \frac{da}{|a|} \, d\xi \, |\hat{\psi}(a\xi)|^2 |\hat{\psi}(\xi)|^2
\]

\[
= 2\pi \|\psi\|^2 \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} \, |\hat{\psi}(\xi)|^2 < \infty
\]

(the integral over \(b\) yields a delta distribution, which can be used to perform the \(\xi'\) integration and the interchange of integrals can be justified using distribution theoretic arguments).
Square integrability, admissibility and irreducibility

Now we address the question of square integrability. We require that,

$$\int \int \int \frac{da \, db}{a^2} \left| \langle \hat{U}(b, a) \hat{\psi} | \hat{\psi} \rangle \right|^2 =$$

$$= \int \int \int d\xi \, d\xi' \frac{da}{|a|} \, db \, e^{ib(\xi-\xi')} \hat{\psi}(a\xi) \hat{\psi}(a\xi') \hat{\psi}(\xi) \hat{\psi}(\xi')$$

$$= 2\pi \int \int \frac{da}{|a|} \, d\xi \left| \hat{\psi}(a\xi) \right|^2 \left| \hat{\psi}(\xi) \right|^2$$

$$= 2\pi \| \psi \|^2 \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} \left| \hat{\psi}(\xi) \right|^2 < \infty$$

(the integral over $b$ yields a delta distribution, which can be used to perform the $\xi'$ integration and the interchange of integrals can be justified using distribution theoretic arguments). This means that the vector $\psi$ is admissible in the sense of our earlier definition if and only if

$$c_\psi \equiv 2\pi \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} \left| \hat{\psi}(\xi) \right|^2 < \infty.$$
From this discussion we draw two immediate conclusions. First, there is a dense set of vectors \( \hat{\psi} \) which satisfy the admissibility condition. Second, the admissibility condition, \( c_\psi < \infty \), simply expresses the square integrability of the representation \( U \).
Square integrability, admissibility and irreducibility

From this discussion we draw two immediate conclusions. First, there is a dense set of vectors $\hat{\psi}$ which satisfy the admissibility condition. Second, the admissibility condition, $c_\psi < \infty$, simply expresses the square integrability of the representation $U$.

Defining an operator $\hat{C}$ on $L^2(\mathbb{R}, d\xi)$,

\[(\hat{C}\hat{\psi})(\xi) = \left[ \frac{2\pi}{|\xi|} \right]^{1/2} \hat{\psi}(\xi),\]

and denoting by $C$ its inverse Fourier transform, we see that the vector $\psi$ is admissible if and only if

\[c_\psi = \| C\psi \|^2 < \infty.\]
Square integrability, admissibility and irreducibility

From this discussion we draw two immediate conclusions. First, there is a dense set of vectors $\hat{\psi}$ which satisfy the admissibility condition. Second, the admissibility condition, $c_\psi < \infty$, simply expresses the square integrability of the representation $U$.

Defining an operator $\hat{C}$ on $L^2(\hat{\mathbb{R}}, d\xi)$,

$$(\hat{C}\hat{\psi})(\xi) = \left[ \frac{2\pi}{|\xi|} \right]^{\frac{1}{2}} \hat{\psi}(\xi),$$

and denoting by $C$ its inverse Fourier transform, we see that the vector $\psi$ is admissible if and only if

$$c_\psi = \|C\psi\|^2 < \infty.$$

This operator, known as the Duflo-Moore operator, is positive, self-adjoint and unbounded. It also has an inverse. It is easily seen that if a vector $\psi$ is admissible, then so also is the vector $U(b, a)\psi$, for any $(b, a) \in G_{aff}$. 
Square integrability, admissibility and irreducibility

A word now about the form of the representation $U(b,a)$. How does one arrive at it?
Square integrability, admissibility and irreducibility

A word now about the form of the representation $U(b, a)$. How does one arrive at it?

In fact, given the way the group acts on $\mathbb{R}$, $x \mapsto ax + b$, the representation $U(b, a)$ is recognized as being the most natural, nontrivial way to realize a group homomorphism onto a set of unitary operators on the signal space $L^2(\mathbb{R}, dx)$. (Unitarity is required in order to ensure that the signal $\psi$ and the transformed signal $U(b, a)\psi$ both have the same total energy).
Square integrability, admissibility and irreducibility

A word now about the form of the representation \( U(b, a) \). How does one arrive at it?

In fact, given the way the group acts on \( \mathbb{R}, \ x \mapsto ax + b \), the representation \( U(b, a) \) is recognized as being the most natural, nontrivial way to realize a group homomorphism onto a set of unitary operators on the signal space \( L^2(\mathbb{R}, dx) \). (Unitarity is required in order to ensure that the signal \( \psi \) and the transformed signal \( U(b, a)\psi \) both have the same total energy).

Indeed, given any differentiable mapping \( T : \mathbb{R}^n \rightarrow \mathbb{R}^n \), the operator \( U(T) \), on the Hilbert space \( L^2(\mathbb{R}^n, d^n\vec{x}) \), defined as

\[
(U(T)f)(\vec{x}) = |\det[J(T)]|^{-\frac{1}{2}} f(T^{-1}(\vec{x})),
\]

where \( J(T) \) is the Jacobian of the map \( T \), is easily seen to be unitary. (Recall that

\[
d(T(\vec{x})) = |\det[J(T)]| \ d\vec{x}. \)
Square integrability, admissibility and irreducibility

This provides the rationale for our definition of the representation $U(b, a)$ in the way we did.
Square integrability, admissibility and irreducibility

This provides the rationale for our definition of the representation $U(b, a)$ in the way we did.

Of course, the interesting point here is that this representation turns out to be both irreducible and square integrable.
Square integrability, admissibility and irreducibility

This provides the rationale for our definition of the representation $U(b, a)$ in the way we did.

Of course, the interesting point here is that this representation turns out to be both irreducible and square integrable.

But then, why is square integrability of the representation a desirable criterion for wavelet analysis? In order to answer this question, let us take a vector $\psi$ satisfying the admissibility condition and use it to construct the wavelet transform of the signal $s$:

$$S(b, a) = \langle \psi_{b,a} \mid s \rangle.$$
Square integrability, admissibility and irreducibility

This provides the rationale for our definition of the representation \( U(b, a) \) in the way we did.

Of course, the interesting point here is that this representation turns out to be both irreducible and square integrable.

But then, why is square integrability of the representation a desirable criterion for wavelet analysis? In order to answer this question, let us take a vector \( \psi \) satisfying the admissibility condition and use it to construct the wavelet transform of the signal \( s \):

\[
S(b, a) = \langle \psi_{b,a} \mid s \rangle.
\]

As we already know, the total energy of the transformed signal is given by the integral

\[
E(S) = \int \int_{G_{aff}} d\mu(b, a) \mid S(b, a) \mid^2,
\]

and we would like this to be finite, like that of the signal itself.
Square integrability, admissibility and irreducibility

An easy computation now shows that

\[ E(S) = \| C_\psi \|^2 \| s \|^2 = c_\psi \| s \|^2 , \]
Square integrability, admissibility and irreducibility

An easy computation now shows that

\[ E(S) = \| C_\psi \|^2 \| s \|^2 = c_\psi \| s \|^2, \]

which means that the total energy of the wavelet transform will be finite if and only if the mother wavelet can be chosen from the domain of the operator \( C \), i.e., if and only if it satisfies the square integrability condition.
Square integrability, admissibility and irreducibility

An easy computation now shows that

\[ E(S) = \| C_\psi \|^2 \| s \|^2 = c_\psi \| s \|^2 , \]

which means that the total energy of the wavelet transform will be finite if and only if the mother wavelet can be chosen from the domain of the operator \( C \), i.e., if and only if it satisfies the square integrability condition.

However, this is not the whole story, for let us rewrite the above equation in the expanded form,

\[
E(S) = \int\int_{G_{aff}} d\mu(b, a) \langle s \mid \psi_{b,a} \rangle \langle \psi_{b,a} \mid s \rangle \\
= \langle s \mid \left[ \int\int_{G_{aff}} d\mu(b, a) \mid \psi_{b,a} \rangle \langle \psi_{b,a} \mid \right] s \rangle \\
= c_\psi \langle s \mid ls \rangle ,
\]
Square integrability, admissibility and irreducibility

An easy computation now shows that

\[ E(S) = \| C\psi \| ^2 \| s \| ^2 = c_\psi \| s \| ^2 , \]

which means that the total energy of the wavelet transform will be finite if and only if the mother wavelet can be chosen from the domain of the operator \( C \), i.e., if and only if it satisfies the square integrability condition.

However, this is not the whole story, for let us rewrite the above equation in the expanded form,

\[
E(S) = \int\int_{G_{aff}} d\mu(b, a) \langle s \mid \psi_{b,a} \rangle \langle \psi_{b,a} \mid s \rangle \\
= \langle s \mid \int\int_{G_{aff}} d\mu(b, a) \mid \psi_{b,a} \rangle \langle \psi_{b,a} \mid s \rangle \\
= c_\psi \langle s \mid Is \rangle ,
\]

Using the well-known polarization identity for scalar products we infer that
Square integrability, admissibility and irreducibility

\[
\frac{1}{c_\psi} \int \int_{G_{\text{aff}}} d\mu(b,a) \left| \psi_{b,a} \right> \left< \psi_{b,a} \right| = I ,
\]

i.e., the resolution of the identity.
Square integrability, admissibility and irreducibility

\[
\frac{1}{c_\psi} \int \int_{G_{\text{aff}}} d\mu(b,a) |\psi_{b,a}\rangle \langle \psi_{b,a}| = I,
\]

i.e., the resolution of the identity. It is immediately clear that this is completely equivalent to the square integrability of the representation \( U(b, a) \).
Square integrability, admissibility and irreducibility

\[
\frac{1}{c_\psi} \int_G d\mu(b,a) \psi_b(a) \langle \psi_b, a \rangle = I,
\]

i.e., the resolution of the identity. It is immediately clear that this is completely equivalent to the square integrability of the representation \( U(b, a) \). The resolution of the identity also incorporates within it the possibility of reconstructing the signal \( s(x) \), from its wavelet transform \( S(b, a) \). To see this, let us act on the vector \( s \in L^2(\mathbb{R}, dx) \) with both sides of the above identity. We get

\[
\frac{1}{c_\psi} \int_G d\mu(b,a) \psi_b(a) \langle \psi_b, a \rangle s = Is = s,
\]
Square integrability, admissibility and irreducibility

\[
\frac{1}{c_\psi} \int \int_{G_{\text{aff}}} d\mu(b,a) \left| \psi_{b,a} \right\rangle \langle \psi_{b,a} \left| = I , \right.
\]

i.e., the resolution of the identity. It is immediately clear that this is completely equivalent to the square integrability of the representation \( U(b, a) \). The resolution of the identity also incorporates within it the possibility of reconstructing the signal \( s(x) \), from its wavelet transform \( S(b, a) \). To see this, let us act on the vector \( s \in L^2(\mathbb{R}, dx) \) with both sides of the above identity. We get

\[
\frac{1}{c_\psi} \int \int_{G_{\text{aff}}} d\mu(b,a) \psi_{b,a} \langle \psi_{b,a} \left| s \right\rangle = Is = s , \]

implying

\[
s(x) = \frac{1}{c_\psi} \int \int_{G_{\text{aff}}} d\mu(b,a) S(b,a) \psi_{b,a}(x) , \quad \text{almost everywhere,} \]

S. Twareque Ali  |  Wavelets and Coherent States
Square integrability, admissibility and irreducibility

which is the celebrated reconstruction formula of signal analysis.

Summarizing, we conclude that square integrability (which is a group property) is precisely the condition which ensures, in this case, the very desirable consequences of
Square integrability, admissibility and irreducibility

which is the celebrated reconstruction formula of signal analysis.

Summarizing, we conclude that square integrability (which is a group property) is precisely the condition which ensures, in this case, the very desirable consequences of

1. the finiteness of the energy of the wavelet transform, and
Square integrability, admissibility and irreducibility

which is the celebrated reconstruction formula of signal analysis.

Summarizing, we conclude that square integrability (which is a group property) is precisely the condition which ensures, in this case, the very desirable consequences of

1. the finiteness of the energy of the wavelet transform, and
2. the validity of the reconstruction formula.
Square integrability, admissibility and irreducibility

which is the celebrated reconstruction formula of signal analysis.

Summarizing, we conclude that square integrability (which is a group property) is precisely the condition which ensures, in this case, the very desirable consequences of

1. the finiteness of the energy of the wavelet transform, and
2. the validity of the reconstruction formula.

These two properties are also shared by the Fourier transform of a signal.
which is the celebrated reconstruction formula of signal analysis.

Summarizing, we conclude that square integrability (which is a group property) is precisely the condition which ensures, in this case, the very desirable consequences of

1. the finiteness of the energy of the wavelet transform, and
2. the validity of the reconstruction formula.

These two properties are also shared by the Fourier transform of a signal. The resolution of the identity condition has independent mathematical interest. First of all, it implies that any vector in $L^2(\mathbb{R}, dx)$ which is orthogonal to all the wavelets $\psi_{b,a}$ is necessarily the zero vector, i.e., the linear span of the wavelets is dense in the Hilbert space of signals.
Square integrability, admissibility and irreducibility

This fact, which could also have been inferred from the irreducibility of the representation $U(b, a)$, is what enables us to use the wavelets as a basis set for expressing arbitrary signals.
This fact, which could also have been inferred from the irreducibility of the representation $U(b, a)$, is what enables us to use the wavelets as a basis set for expressing arbitrary signals.

In fact we have here what is also known as an overcomplete basis. Secondly, this overcomplete basis is a continuously parametrized set, meaning that this is an example of a continuous basis and a continuous frame.
This fact, which could also have been inferred from the irreducibility of the representation $U(b, a)$, is what enables us to use the wavelets as a basis set for expressing arbitrary signals. In fact we have here what is also known as an overcomplete basis. Secondly, this overcomplete basis is a continuously parametrized set, meaning that this is an example of a continuous basis and a continuous frame. As mentioned earlier, for practical implementation, one samples this continuous basis to extract a discrete set of basis vectors which forms a discrete frame.
The space of all wavelet transforms

A finite energy wavelet transform $S(b, a)$ is an element of the Hilbert space $L^2(\mathbb{H}, d\mu)$. Here we have written $\mathbb{H} = \mathbb{R} \times \mathbb{R}^*$, ($\mathbb{R}^*$ = real line with the origin removed). Although, $\mathbb{H}$ and $G_{aff}$ are homeomorphic as topological spaces, we prefer to denote them by different symbols, for presently we shall identify $\mathbb{H}$ with a phase space of $G_{aff}$, arising from its matrix geometry.
A finite energy wavelet transform \( S(b, a) \) is an element of the Hilbert space \( L^2(\mathbb{H}, d\mu) \). Here we have written \( \mathbb{H} = \mathbb{R} \times \mathbb{R}^* \) (\( \mathbb{R}^* = \) real line with the origin removed). Although, \( \mathbb{H} \) and \( G_{\text{aff}} \) are homeomorphic as topological spaces, we prefer to denote them by different symbols, for presently we shall identify \( \mathbb{H} \) with a phase space of \( G_{\text{aff}} \), arising from its matrix geometry.

Computing the \( L^2 \)-norm of the wavelet transform \( S \) (as an element in \( L^2(\mathbb{H}, d\mu) \)) and the \( L^2 \)-norm of the signal \( s \) (as an element in \( L^2(\mathbb{R}, dx) \)), we get

\[
\|S\|^2 = c_\psi \|s\|^2 ,
\]

i.e., up to a constant, the wavelet transform preserves norms (or energies).
The space of all wavelet transforms

A finite energy wavelet transform $S(b, a)$ is an element of the Hilbert space $L^2(\mathbb{H}, d\mu)$. Here we have written $\mathbb{H} = \mathbb{R} \times \mathbb{R}^*$, ($\mathbb{R}^* =$ real line with the origin removed). Although, $\mathbb{H}$ and $G_{\text{aff}}$ are homeomorphic as topological spaces, we prefer to denote them by different symbols, for presently we shall identify $\mathbb{H}$ with a phase space of $G_{\text{aff}}$, arising from its matrix geometry.

Computing the $L^2$-norm of the wavelet transform $S$ (as an element in $L^2(\mathbb{H}, d\mu)$) and the $L^2$-norm of the signal $s$ (as an element in $L^2(\mathbb{R}, dx)$), we get

$$\|S\|^2 = c_\psi \|s\|^2,$$

i.e., up to a constant, the wavelet transform preserves norms (or energies).

We define a map $W_\psi : L^2(\mathbb{R}, dx) \to L^2(\mathbb{H}, d\mu)$, by the relation

$$(W_\psi s)(a, b) = [c_\psi]^{-\frac{1}{2}} \langle \psi_{b, a} | s \rangle_{L^2(\mathbb{R}, dx)} = [c_\psi]^{-\frac{1}{2}} S(b, a).$$

This map is linear and, in view of the previous relation, an isometry.
The space of all wavelet transforms

The range of $W_\psi$, which is the set of all wavelet transforms corresponding to the mother wavelet $\psi$, is a closed subspace of $L^2(\mathbb{H}, d\mu)$. We denote the range by $\mathcal{H}_\psi$:

$$\mathcal{H}_\psi = W_\psi \left[ L^2(\mathbb{R}, dx) \right] \subset L^2(\mathbb{H}, d\mu).$$
The space of all wavelet transforms

The range of $W_\psi$, which is the set of all wavelet transforms corresponding to the mother wavelet $\psi$, is a closed subspace of $L^2(\mathbb{H}, d\mu)$. We denote the range by $\mathcal{H}_\psi$:

$$\mathcal{H}_\psi = W_\psi \left[ L^2(\mathbb{R}, dx) \right] \subset L^2(\mathbb{H}, d\mu).$$

From the nature of $W_\psi$, we infer that $\mathcal{H}_\psi$ consists of continuous functions over $\mathbb{H}$ and hence is a proper subspace of $L^2(\mathbb{H}, d\mu)$. 
The space of all wavelet transforms

The range of $W_\psi$, which is the set of all wavelet transforms corresponding to the mother wavelet $\psi$, is a closed subspace of $L^2(\mathbb{H}, d\mu)$. We denote the range by $\mathcal{H}_\psi$:

$$\mathcal{H}_\psi = W_\psi \left[ L^2(\mathbb{R}, dx) \right] \subset L^2(\mathbb{H}, d\mu).$$

From the nature of $W_\psi$, we infer that $\mathcal{H}_\psi$ consists of continuous functions over $\mathbb{H}$ and hence is a proper subspace of $L^2(\mathbb{H}, d\mu)$. It is worthwhile reiterating here the fact that the condition of $W_\psi$ being an isometry implies, not only that the wavelet transform (with respect to the mother wavelet $\psi$) of any signal $s \in L^2(\mathbb{R}, dx)$ is an element in $\mathcal{H}_\psi$, but also that every element in $\mathcal{H}_\psi$ is the wavelet transform of some signal $s \in L^2(\mathbb{R}, dx)$. 

Is there some convenient, intrinsic way to characterize the subspace $\mathcal{H}_\psi$? To answer this question we appeal to the resolution of the identity and a bit of group theory.
The space of all wavelet transforms

The range of $W_\psi$, which is the set of all wavelet transforms corresponding to the mother wavelet $\psi$, is a closed subspace of $L^2(\mathbb{H}, d\mu)$. We denote the range by $\mathcal{H}_\psi$:

$$\mathcal{H}_\psi = W_\psi \left[ L^2(\mathbb{R}, dx) \right] \subset L^2(\mathbb{H}, d\mu).$$

From the nature of $W_\psi$, we infer that $\mathcal{H}_\psi$ consists of continuous functions over $\mathbb{H}$ and hence is a proper subspace of $L^2(\mathbb{H}, d\mu)$. It is worthwhile reiterating here the fact that the condition of $W_\psi$ being an isometry implies, not only that the wavelet transform (with respect to the mother wavelet $\psi$) of any signal $s \in L^2(\mathbb{R}, dx)$ is an element in $\mathcal{H}_\psi$, but also that every element in $\mathcal{H}_\psi$ is the wavelet transform of some signal $s \in L^2(\mathbb{R}, dx)$.

Is there some convenient, intrinsic way to characterize the subspace $\mathcal{H}_\psi$? To answer this question we appeal to the resolution of the identity and a bit of group theory.
An intrinsic characterization of the space of wavelet transforms

The final characterization will be spelled out in a theorem below. Multiplying each side of the resolution of the identity by itself we find,

$$\frac{1}{c_\psi} \int \int_{\mathbb{H} \times \mathbb{H}} d\mu(b', a') d\mu(b, a) \left| \psi_{b, a} \right\rangle K_\psi(b, a; b', a') \left\langle \psi_{b', a'} \right| = I ,$$

where we have written

$$K_\psi(b, a; b', a') = \frac{1}{c_\psi} \langle \psi_{b', a'} | \psi_{b, a} \rangle .$$

Acting on the signal vector $s$ with both sides of the first equation we obtain

$$\frac{1}{c_\psi} \int \mathbb{H} d\mu(b, a) \left( \int \mathbb{H} d\mu(b', a') K_\psi(b, a; b', a') s(b', a') \right) \psi_{b, a}(x) = s(x),$$

almost everywhere (the change in the order of integrations being easily justified by Fubini's theorem).
An intrinsic characterization of the space of wavelet transforms

The final characterization will be spelled out in a theorem below. Multiplying each side of the resolution of the identity by itself we find,

\[
\frac{1}{c_\psi} \int \int_{H \times H} d\mu(b', a') d\mu(b, a) \langle \psi_{b, a} \rangle K_{\psi}(b, a; b', a') \langle \psi_{b', a'} \rangle = I ,
\]

where we have written

\[
K_{\psi}(b, a; b', a') = \frac{1}{c_\psi} \langle \psi_{b, a} | \psi_{b', a'} \rangle.
\]
An intrinsic characterization of the space of wavelet transforms

The final characterization will be spelled out in a theorem below. Multiplying each side of the resolution of the identity by itself we find,

$$
\frac{1}{c_\psi} \int \int_{H \times H} d\mu(b', a') \ d\mu(b, a) \ |\psi_{b, a}\rangle \ K_{\psi}(b, a; b', a') \langle \psi_{b', a'}| = I,
$$

where we have written

$$
K_{\psi}(b, a; b', a') = \frac{1}{c_\psi} \langle \psi_{b, a} | \psi_{b', a'} \rangle .
$$

Acting on the signal vector $s$ with both sides of the first equation we obtain

$$
\frac{1}{c_\psi} \int_{H} d\mu(b, a) \left[ \int_{H} d\mu(b', a') \ K_{\psi}(b, a; b', a') S(b', a') \right] \psi_{b, a}(x) = s(x) ,
$$

almost everywhere (the change in the order of integrations being easily justified by Fubini’s theorem).
An intrinsic characterization of the space of wavelet transforms

Comparing the above equation with the reconstruction formula we obtain

$$\int_{\mathbb{H}} d\mu(b', a') \ K_\psi(b, a ; b', a') S(b', a') = S(b, a),$$

for almost all \((b, a)\) in \(\mathbb{H}\) (with respect to the measure \(d\mu\)).
An intrinsic characterization of the space of wavelet transforms

Comparing the above equation with the reconstruction formula we obtain

$$\int_{\mathbb{H}} d\mu(b', a') K_\psi(b, a; b', a') S(b', a') = S(b, a),$$

for almost all \((b, a)\) in \(\mathbb{H}\) (with respect to the measure \(d\mu\)). This then is the condition which characterizes wavelet transforms coming from the mother wavelet \(\psi\) – the reproducing property of the integral kernel \(K_\psi\).
An intrinsic characterization of the space of wavelet transforms

Comparing the above equation with the reconstruction formula we obtain

$$\int_H d\mu(b', a') K_\psi(b, a; b', a') S(b', a') = S(b, a),$$

for almost all \((b, a)\) in \(H\) (with respect to the measure \(d\mu\)). This then is the condition which characterizes wavelet transforms coming from the mother wavelet \(\psi\) – the reproducing property of the integral kernel \(K_\psi\).

As we know, the kernel \(K_\psi : H \times H \to \mathbb{C}\) is called a reproducing kernel. It has the easily verifiable properties:

\[
K_\psi(b, a; b, a) > 0, \quad \forall (b, a) \in H, \quad K_\psi(b, a; b', a') = \overline{K_\psi(b', a'; b, a)},
\]

\[
\int \int_{H \times H} d\mu(b'', a'') K_\psi(b, a; b'', a'') K_\psi(b'', a''; b', a') = K_\psi(b, a; b', a'),
\]
An intrinsic characterization of the space of wavelet transforms

Comparing the above equation with the reconstruction formula we obtain

$$\int_{\mathbb{H}} d\mu(b', a') \ K_\psi(b, a; b', a') S(b', a') = S(b, a),$$

for almost all \((b, a)\) in \(\mathbb{H}\) (with respect to the measure \(d\mu\)). This then is the condition which characterizes wavelet transforms coming from the mother wavelet \(\psi\) – the reproducing property of the integral kernel \(K_\psi\).

As we know, the kernel \(K_\psi : \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{C}\) is called a reproducing kernel. It has the easily verifiable properties:

$$K_\psi(b, a; b, a) > 0, \ \forall (b, a) \in \mathbb{H}, \quad K_\psi(b, a; b', a') = \overline{K_\psi(b', a'; b, a)},$$

$$\int \int_{\mathbb{H} \times \mathbb{H}} d\mu(b'', a'') \ K_\psi(b, a; b'', a'') \ K_\psi(b'', a''; b', a') = K_\psi(b, a; b', a'),$$

the last relation being again the reproducing property. The last two equations hold pointwise, \(\forall (b, a), (b', a') \in \mathbb{H}\).
An intrinsic characterization of the space of wavelet transforms

Next let us compute the wavelet transforms of the wavelets $\psi_{b,a}$ themselves. Denoting the transforms by $S_{b,a}$ we find

$$S_{b,a}(b', a') = \langle \psi_{b', a'} | \psi_{b,a} \rangle = c_\psi \ K_{\psi}(b', a' ; b, a).$$
An intrinsic characterization of the space of wavelet transforms

Next let us compute the wavelet transforms of the wavelets $\psi_{b,a}$ themselves. Denoting the transforms by $S_{b,a}$ we find

$$S_{b,a}(b', a') = \langle \psi_{b', a'} | \psi_{b, a} \rangle = c_\psi \ K_\psi(b', a' ; b, a) .$$

Since the vectors $\psi_{b,a}$, $(b, a) \in \mathbb{H}$, are overcomplete in $L^2(\mathbb{R}, \ dx)$, the wavelet transforms $S_{b,a}$ must also be overcomplete in $\mathcal{F}_\psi$. One also has the easily verifiable resolution of the identity,

$$[c_\psi]^{-2} \int_{\mathbb{H}} d\mu(b, a) \ |S_{b,a}\rangle\langle S_{b,a}| = I_\psi ,$$
An intrinsic characterization of the space of wavelet transforms

Next let us compute the wavelet transforms of the wavelets $\psi_{b,a}$ themselves. Denoting the transforms by $S_{b,a}$ we find

$$S_{b,a}(b', a') = \langle \psi_{b', a'} | \psi_{b,a} \rangle = c_\psi \ K_\psi(b', a' ; b, a) .$$

Since the vectors $\psi_{b,a}$, $(b, a) \in \mathbb{H}$, are overcomplete in $L^2(\mathbb{R}, \ dx)$, the wavelet transforms $S_{b,a}$ must also be overcomplete in $\mathcal{H}_\psi$. One also has the easily verifiable resolution of the identity,

$$[c_\psi]^{-2} \int_\mathbb{H} d\mu(b, a) \ |S_{b,a}\rangle \langle S_{b,a}| = I_\psi ,$$

where we have written $I_\psi$ for the identity operator on $\mathcal{H}_\psi$. Thus, any vector $F \in L^2(\mathbb{H}, d\mu)$ which lies in the orthogonal complement of $\mathcal{H}_\psi$ must satisfy

$$\int_\mathbb{H} d\mu(b', a') \ K_\psi(b, a ; b', a')F(b', a') = 0 .$$
Thus, the reproducing kernel $K_\psi$ defines the projection operator $\mathbb{P}_\psi$ from $L^2(\mathbb{H}, d\mu)$ to $\mathcal{S}_\psi$:

$$(\mathbb{P}_\psi F)(b, a) = \int_{\mathbb{H}} d\mu(b', a') \ K_\psi(b, a; b', a') F(b', a') , \quad F \in L^2(\mathbb{H}, d\mu) ,$$
An intrinsic characterization of the space of wavelet transforms

Thus, the reproducing kernel $K_\psi$ defines the projection operator $P_\psi$ from $L^2(\mathbb{H}, d\mu)$ to $\mathcal{S}_\psi$:

$$(P_\psi F)(b, a) = \int_{\mathbb{H}} d\mu(b', a') \, K_\psi(b, a; b', a') F(b', a') \, , \quad F \in L^2(\mathbb{H}, d\mu) \, ,$$

the previous relations mirroring the conditions $P_\psi = P_\psi^* = P_\psi^2$. Stated differently, an arbitrary vector $F \in L^2(\mathbb{H}, d\mu)$ can be uniquely written as the sum

$$F = F_\psi + F_{\psi}^\perp \, ,$$
An intrinsic characterization of the space of wavelet transforms

Thus, the reproducing kernel \( K_\psi \) defines the projection operator \( P_\psi \) from \( L^2(\mathbb{H}, d\mu) \) to \( \mathcal{H}_\psi \):

\[
(P_\psi F)(b, a) = \int_{\mathbb{H}} d\mu(b', a') K_\psi(b, a ; b', a') F(b', a') , \quad F \in L^2(\mathbb{H}, d\mu) ,
\]

the previous relations mirroring the conditions \( P_\psi = P_\psi^* = P_\psi^2 \). Stated differently, an arbitrary vector \( F \in L^2(\mathbb{H}, d\mu) \) can be uniquely written as the sum

\[
F = F_\psi + F_\psi^\perp ,
\]

of a part \( F_\psi \in \mathcal{H}_\psi \) and a part \( F_\psi^\perp \) orthogonal to it. The operator \( P_\psi \), acting on \( F \), projects out the part \( F_\psi \) (which is a wavelet transform).
An intrinsic characterization of the space of wavelet transforms

Thus, the reproducing kernel $K_{\psi}$ defines the projection operator $P_{\psi}$ from $L^2(\mathbb{H}, d\mu)$ to $\mathcal{H}_\psi$:

$$(P_{\psi} F)(b, a) = \int_{\mathbb{H}} d\mu(b', a') K_{\psi}(b, a; b', a') F(b', a') , \quad F \in L^2(\mathbb{H}, d\mu) ,$$

the previous relations mirroring the conditions $P_{\psi} = P_{\psi}^* = P_{\psi}^2$. Stated differently, an arbitrary vector $F \in L^2(\mathbb{H}, d\mu)$ can be uniquely written as the sum

$$F = F_{\psi} + F_{\psi}^\perp ,$$

of a part $F_{\psi} \in \mathcal{H}_\psi$ and a part $F_{\psi}^\perp$ orthogonal to it. The operator $P_{\psi}$, acting on $F$, projects out the part $F_{\psi}$ (which is a wavelet transform). It is natural to ask at this point if $F_{\psi}^\perp$ could also be written as the wavelet transform with respect to some other mother wavelet. As will be seen below, generally $F_{\psi}^\perp$ can be written as an infinite sum of orthogonal wavelet transforms, corresponding to different mother wavelets.
To proceed further, we go back to the affine group, $G_{\text{aff}}$, and note that there is a natural unitary representation of it on the Hilbert space $L^2(\mathbb{H}, d\mu)$, given by its natural action on $\mathbb{H}$. This is just $U_\ell(b, a)$, the left regular representation

$$
(U_\ell(b, a)F)(b', a') = F((b, a)^{-1}(b', a')) 
= F \left( \frac{b' - b}{a}, \frac{a'}{a} \right), \quad F \in L^2(\mathbb{H}, d\mu).
$$
The space of all wavelet transforms

To proceed further, we go back to the affine group, $G_{\text{aff}}$, and note that there is a natural unitary representation of it on the Hilbert space $L^2(\mathbb{H}, d\mu)$, given by its natural action on $\mathbb{H}$. This is just $U_{\ell}(b, a)$, the left regular representation

$$(U_{\ell}(b, a)F)(b', a') = F((b, a)^{-1}(b', a'))$$

$$= F\left(\frac{b' - b}{a}, \frac{a'}{a}\right), \quad F \in L^2(\mathbb{H}, d\mu).$$

The unitarity of this representation,

$$\|U_{\ell}(b, a)F\|^2_{L^2(\mathbb{H}, d\mu)} = \|F\|^2_{L^2(\mathbb{H}, d\mu)},$$

is guaranteed by the invariance of the measure $d\mu$. However, the left regular representation is not irreducible, since as we shall see below, the subspace $\mathcal{H}_\psi$ carries a subrepresentation of it.
The space of all wavelet transforms

To proceed further, we go back to the affine group, $G_{\text{aff}}$, and note that there is a natural unitary representation of it on the Hilbert space $L^2(\mathbb{H}, d\mu)$, given by its natural action on $\mathbb{H}$. This is just $U_\ell(b, a)$, the left regular representation

$$(U_\ell(b, a)F)(b', a') = F((b, a)^{-1}(b', a'))$$

$$= F\left(\frac{b' - b}{a}, \frac{a'}{a}\right), \quad F \in L^2(\mathbb{H}, d\mu).$$

The unitarity of this representation,

$$\|U_\ell(b, a)F\|_{L^2(\mathbb{H}, d\mu)}^2 = \|F\|_{L^2(\mathbb{H}, d\mu)}^2,$$

is guaranteed by the invariance of the measure $d\mu$. However, the left regular representation is not irreducible, since as we shall see below, the subspace $\mathcal{H}_\psi$ carries a subrepresentation of it. The isometry $W_\psi$ maps the unitary operators $U(b, a)$ onto unitary operators $U_\psi(b, a) = W_\psi U(b, a) W_\psi^{-1}$ on $L^2(\mathbb{H}, d\mu)$. 
The space of all wavelet transforms

Computing the action of these operators, we find

$$(U_\psi(b, a)F)(b', a') = F\left(\frac{b' - b}{a}, \frac{a'}{a}\right), \quad F \in \mathcal{S}_\psi.$$
The space of all wavelet transforms

Computing the action of these operators, we find

\[(U_\psi(b, a)F)(b', a') = F \left( \frac{b' - b}{a}, \frac{a'}{a} \right), \quad F \in \mathcal{H}_\psi.\]

This is the same action as that of the operators \(U_\ell(b, a)\) of the left regular representation, except that now it is expressed exclusively in terms of vectors in \(\mathcal{H}_\psi\).
The space of all wavelet transforms

Computing the action of these operators, we find

$$(U_\psi(b, a)F)(b', a') = F\left(\frac{b' - b}{a}, \frac{a'}{a}\right), \quad F \in \mathcal{H}_\psi.$$  

This is the same action as that of the operators $U_\ell(b, a)$ of the left regular representation, except that now it is expressed exclusively in terms of vectors in $\mathcal{H}_\psi$.

This means, first of all, that the subspace $\mathcal{H}_\psi$ is stable under the action of the operators $U_\ell(b, a)$ and, secondly, that restricted to this subspace, it gives an irreducible unitary representation of $G_{\text{aff}}$. 
The space of all wavelet transforms

Computing the action of these operators, we find

\[ (U_\psi(b, a)F)(b', a') = F\left(\frac{b' - b}{a}, \frac{a'}{a}\right), \quad F \in \mathcal{H}_\psi. \]

This is the same action as that of the operators \( U_\ell(b, a) \) of the left regular representation, except that now it is expressed exclusively in terms of vectors in \( \mathcal{H}_\psi \).

This means, first of all, that the subspace \( \mathcal{H}_\psi \) is stable under the action of the operators \( U_\ell(b, a) \) and, secondly, that restricted to this subspace, it gives an irreducible unitary representation of \( G_{\text{aff}} \).

We shall identify \( L^2(\mathbb{H}, d\mu) \) with the space of all wavelet transforms.
The space of all wavelet transforms

Computing the action of these operators, we find

\[( U_\psi(b, a)F)(b', a') = F\left(\frac{b' - b}{a}, \frac{a'}{a}\right), \quad F \in \mathcal{H}_\psi. \]

This is the same action as that of the operators \( U_\ell(b, a) \) of the left regular representation, except that now it is expressed exclusively in terms of vectors in \( \mathcal{H}_\psi \).

This means, first of all, that the subspace \( \mathcal{H}_\psi \) is stable under the action of the operators \( U_\ell(b, a) \) and, secondly, that restricted to this subspace, it gives an 
irreducible unitary representation of \( G_{aff} \).

We shall identify \( L^2(\mathbb{H}, d\mu) \) with the space of all wavelet transforms. Let \( \psi \) and \( \psi' \) be two different mother wavelets. This means that they are both vectors in the domain of the operator \( C \).
The space of all wavelet transforms

Computing the action of these operators, we find

\[(U_\psi(b, a)F)(b', a') = F \left( \frac{b' - b}{a'}, \frac{a'}{a} \right), \quad F \in \mathcal{H}_\psi.\]

This is the same action as that of the operators \(U_\ell(b, a)\) of the left regular representation, except that now it is expressed exclusively in terms of vectors in \(\mathcal{H}_\psi\).

This means, first of all, that the subspace \(\mathcal{H}_\psi\) is stable under the action of the operators \(U_\ell(b, a)\) and, secondly, that restricted to this subspace, it gives an irreducible unitary representation of \(G_{\text{aff}}\).

We shall identify \(L^2(H, d\mu)\) with the space of all wavelet transforms.

Let \(\psi\) and \(\psi'\) be two different mother wavelets. This means that they are both vectors in the domain of the operator \(C\).

How are wavelet transforms, taken with respect to these mother wavelets, related?
In particular, denoting by $S_\psi$ the wavelet transform of the signal $s$, taken with respect to the mother wavelet $\psi$, and by $S'_{\psi'}$ the wavelet transform of the signal $s'$, taken with respect to the mother wavelet $\psi'$, we would like to evaluate the overlap

$$I(\psi, \psi'; s', s) = \int \int_{\mathbb{H}} d\mu(b, a) \overline{S'_{\psi'}(b, a)} S_\psi(b, a)$$
Decomposition of the space of all finite energy wavelet transforms

In particular, denoting by $S_{\psi}$ the wavelet transform of the signal $s$, taken with respect to the mother wavelet $\psi$, and by $S'_{\psi'}$, the wavelet transform of the signal $s'$, taken with respect to the mother wavelet $\psi'$, we would like to evaluate the overlap

$$I(\psi, \psi'; s', s) = \int \int d\mu(b, a) \overline{S'_{\psi'}}(b, a) S_{\psi}(b, a)$$

Let us begin by assuming that $s, s'$ are taken from a class of smooth functions (e.g., the Schwartz class, $S(\mathbb{R})$), which is dense in $L^2(\mathbb{R}, dx)$. Then

$$I(\psi, \psi'; s', s) = \int \int \frac{db \, da}{a^2} \langle \hat{s}' | \hat{\psi}'_{b, a} \rangle \langle \hat{\psi}_{b, a} | \hat{s} \rangle$$

$$= \int \int \left[ \int \frac{d\xi}{a^2} \left| a \right|^{1/2} e^{ib\xi} \hat{s}'(\xi) \hat{\psi}'(a\xi) \right] \times \left[ \int \frac{d\xi'}{a^2} \left| a \right|^{1/2} e^{-ib\xi'} \hat{s}(\xi') \hat{\psi}(a\xi') \right].$$
Decomposition of the space of all finite energy wavelet transforms

We exploit the smoothness of the functions $s, s'$ to use the identity

$$\frac{1}{2\pi} \int_{\mathbb{R}} db \ e^{ib(\xi-\xi')} = \delta(\xi - \xi'),$$
Decomposition of the space of all finite energy wavelet transforms

We exploit the smoothness of the functions \( s, s' \) to use the identity

\[
\frac{1}{2\pi} \int_{\mathbb{R}} db \ e^{ib(\xi - \xi')} = \delta(\xi - \xi'),
\]

which holds in the sense of distributions, and then perform the \( \xi' \)-integration to obtain

\[
I(\psi, \psi'; s', s) = 2\pi \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{da}{a} \ d\xi \ \hat{\psi}(a\xi) \ \hat{\psi}'(a\xi) \ \hat{s}(\xi) \ \hat{s}'(\xi).
\]
Decomposition of the space of all finite energy wavelet transforms

We exploit the smoothness of the functions $s, s'$ to use the identity

$$\frac{1}{2\pi} \int_{\mathbb{R}} db \ e^{ib(\xi - \xi')} = \delta(\xi - \xi'),$$

which holds in the sense of distributions, and then perform the $\xi'$-integration to obtain

$$I(\psi, \psi'; s', s) = 2\pi \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{da}{a} \ d\xi \ \hat{\psi}(a\xi) \ \hat{\psi}'(a\xi) \ \hat{s}(\xi) \ \hat{s}'(\xi).$$

Changing variables, we get

$$I(\psi, \psi'; s', s) = 2\pi \left[ \int_{\mathbb{R}} dy \ \frac{\hat{\psi}(y) \ \hat{\psi}'(y)}{|y|} \right] \cdot \left[ \int_{\mathbb{R}} d\xi \ \hat{s}(\xi) \ \hat{s}'(\xi) \right]$$

$$= \langle \mathcal{C}\hat{\psi} | \mathcal{C}\hat{\psi}' \rangle \langle \hat{s}' | \hat{s} \rangle.$$
Decomposition of the space of all finite energy wavelet transforms

Thus,

\[
\int \int_{\mathbb{H}} d\mu(b, a) \overline{S_{\psi'}(b, a)} S_{\psi}(b, a) = \int \int_{\mathbb{H}} d\mu(b, a) \langle s' | \psi_{b,a}' \rangle \langle \psi_{b,a} | s \rangle = \langle C_{\psi} | C_{\psi'} \rangle \langle s' | s \rangle.
\]
Decomposition of the space of all finite energy wavelet transforms

Thus,

\[
\int\int_{\mathbb{H}} d\mu(b, a) \overline{S'_{\psi'}(b, a)} S_{\psi}(b, a) = \int\int_{\mathbb{H}} d\mu(b, a) \langle s' | \psi'_{b,a} \rangle \langle \psi_{b,a} | s \rangle = \langle C\psi | C\psi' \rangle \langle s' | s \rangle.
\]

Using the continuity of the scalar product \( \langle s' | s \rangle \) in \( s \) and \( s' \), we may now extend the above expression to all signals \( s, s' \in L^2(\mathbb{R}, dx) \).
Decomposition of the space of all finite energy wavelet transforms

Thus,

$$
\int\int_{H} d\mu(b,a) \overline{S_{\psi'}(b,a)} S_{\psi}(b,a) = \int\int_{H} d\mu(b,a) \langle s' | \psi_{b,a}' \rangle \langle \psi_{b,a} | s \rangle \\
= \langle C_{\psi} | C_{\psi}' \rangle \langle s' | s \rangle.
$$

Using the continuity of the scalar product $\langle s' | s \rangle$ in $s$ and $s'$, we may now extend the above expression to all signals $s, s' \in L^{2}(\mathbb{R}, \, dx)$. The equation above is a general orthogonality relation for wavelet transforms. In particular, if $C_{\psi}$ and $C_{\psi'}$ are orthogonal vectors, then the corresponding wavelet transforms are also orthogonal in $L^{2}(H, \, d\mu)$. We may also write this equation in the form of an operator identity on $L^{2}(\mathbb{R}, \, dx)$:

$$
\int\int_{H} d\mu(b,a) \langle \psi_{b,a}' \rangle \langle \psi_{b,a} | s \rangle = \langle C_{\psi} | C_{\psi}' \rangle I,
$$
Decomposition of the space of all finite energy wavelet transforms

Thus,

$$\int\int_{H} d\mu(b, a) \overline{S'_{\psi}}(b, a) S_{\psi}(b, a) = \int\int_{H} d\mu(b, a) \langle s' | \psi'_{b, a} \rangle \langle \psi_{b, a} | s \rangle$$

$$= \langle C\psi | C\psi' \rangle \langle s' | s \rangle .$$

Using the continuity of the scalar product $\langle s' | s \rangle$ in $s$ and $s'$, we may now extend the above expression to all signals $s, s' \in L^2(\mathbb{R}, dx)$. The equation above is a general orthogonality relation for wavelet transforms. In particular, if $C\psi$ and $C\psi'$ are orthogonal vectors, then the corresponding wavelet transforms are also orthogonal in $L^2(H, d\mu)$. We may also write this equation in the form of an operator identity on $L^2(\mathbb{R}, dx)$:

$$\int\int_{H} d\mu(b, a) \langle \psi'_{b, a} | \psi_{b, a} \rangle = \langle C\psi | C\psi' \rangle I ,$$

which clearly is a generalization of the resolution of the identity.
Let us emphasize that the above orthogonality relation implies:

- If \( s \) and \( s' \) are signals which are orthogonal vectors in \( L^2(\mathbb{R}, dx) \), then their wavelet transforms \( S \) and \( S' \), whether with respect to the same or different mother wavelets, are orthogonal as vectors in \( L^2(\mathbb{H}, d\mu) \).
Decomposition of the space of all finite energy wavelet transforms

Let us emphasize that the above orthogonality relation implies:

- If $s$ and $s'$ are signals which are orthogonal vectors in $L^2(\mathbb{R}, dx)$, then their wavelet transforms $S$ and $S'$, whether with respect to the same or different mother wavelets, are orthogonal as vectors in $L^2(\mathbb{H}, d\mu)$.

- Spaces of wavelet transforms, $\mathcal{H}_\psi$, $\mathcal{H}_{\psi'}$, corresponding to mother wavelets $\psi, \psi'$ which satisfy the orthogonality condition $C\psi \perp C\psi'$, are orthogonal subspaces of $L^2(\mathbb{H}, d\mu)$. 
Decomposition of the space of all finite energy wavelet transforms

Let us emphasize that the above orthogonality relation implies:

1. If $s$ and $s'$ are signals which are orthogonal vectors in $L^2(\mathbb{R}, dx)$, then their wavelet transforms $S$ and $S'$, whether with respect to the same or different mother wavelets, are orthogonal as vectors in $L^2(\mathbb{H}, d\mu)$.

2. Spaces of wavelet transforms, $\mathcal{H}_\psi$, $\mathcal{H}_{\psi'}$, corresponding to mother wavelets $\psi, \psi'$ which satisfy the orthogonality condition $C\psi \perp C\psi'$, are orthogonal subspaces of $L^2(\mathbb{H}, d\mu)$.

Acting on a signal $s \in L^2(\mathbb{R}, dx)$ with both sides of the orthogonality relation, and assuming that $\langle C\psi | C\psi' \rangle \neq 0$,

$$s = \frac{1}{\langle C\psi | C\psi' \rangle} \int_{\mathbb{H}} \int d\mu(b, a) S_\psi(b, a)\psi'_{b,a}, \quad \psi'_{b,a} = U(b, a)\psi', \quad \text{for } \psi, \psi' \text{ any mother wavelets}. $$
Decomposition of the space of all finite energy wavelet transforms

Let us emphasize that the above orthogonality relation implies:

- If \( s \) and \( s' \) are signals which are orthogonal vectors in \( L^2(\mathbb{R}, dx) \), then their wavelet transforms \( S \) and \( S' \), whether with respect to the same or different mother wavelets, are orthogonal as vectors in \( L^2(\mathbb{H}, d\mu) \).

- Spaces of wavelet transforms, \( \mathcal{H}_\psi, \mathcal{H}_{\psi'} \), corresponding to mother wavelets \( \psi, \psi' \) which satisfy the orthogonality condition \( C\psi \perp C\psi' \), are orthogonal subspaces of \( L^2(\mathbb{H}, d\mu) \).

Acting on a signal \( s \in L^2(\mathbb{R}, dx) \) with both sides of the orthogonality relation, and assuming that \( \langle C\psi | C\psi' \rangle \neq 0 \),

\[
s = \frac{1}{\langle C\psi | C\psi' \rangle} \int_{\mathbb{H}} \int_{\mathbb{H}} d\mu(b, a) \ S_\psi(b, a) \psi'_{b,a}, \quad \psi'_{b,a} = U(b, a)\psi',
\]

where \( S_\psi(b, a) = \langle \psi_{b,a} | s \rangle \) is the wavelet transform of \( s \) computed with respect to the mother wavelet \( \psi \).
Decomposition of the space of all finite energy wavelet transforms

Thus, although the wavelet transform is computed with respect to the mother wavelet $\psi$, it can be reconstructed using the wavelets of any other mother wavelet $\psi'$, so long as $\langle C\psi | C\psi' \rangle \neq 0$. 
Decomposition of the space of all finite energy wavelet transforms

Thus, although the wavelet transform is computed with respect to the mother wavelet $\psi$, it can be reconstructed using the wavelets of any other mother wavelet $\psi'$, so long as $\langle C\psi | C\psi' \rangle \neq 0$.

Moreover, up to a multiplicative constant, the reconstruction formula is exactly the same as that in which the same wavelet $\psi$ is used both for analyzing and reconstructing. This indicates, that in some sense, analysis and reconstruction are independent of the mother wavelet chosen.
Decomposition of the space of all finite energy wavelet transforms

Thus, although the wavelet transform is computed with respect to the mother wavelet $\psi$, it can be reconstructed using the wavelets of any other mother wavelet $\psi'$, so long as $\langle C\psi | C\psi' \rangle \neq 0$.

Moreover, up to a multiplicative constant, the reconstruction formula is exactly the same as that in which the same wavelet $\psi$ is used both for analyzing and reconstructing. This indicates, that in some sense, analysis and reconstruction are independent of the mother wavelet chosen.

Let us choose a set of mother wavelets $\{\psi_n\}_{n=0}^{\infty}$ such that the vectors $\phi_n = C\psi_n$ form an orthonormal basis of $L^2(\mathbb{R}, dx)$,

$$\langle \phi_n | \phi_m \rangle = \langle C\psi_n | C\psi_m \rangle = \delta_{nm} , \quad n, m = 0, 1, 2, \ldots, \infty .$$
Thus, although the wavelet transform is computed with respect to the mother wavelet \( \psi \), it can be reconstructed using the wavelets of any other mother wavelet \( \psi' \), so long as \( \langle C\psi \mid C\psi' \rangle \neq 0 \).

Moreover, up to a multiplicative constant, the reconstruction formula is exactly the same as that in which the same wavelet \( \psi \) is used both for analyzing and reconstructing. This indicates, that in some sense, analysis and reconstruction are independent of the mother wavelet chosen.

Let us choose a set of mother wavelets \( \{\psi_n\}_{n=1}^{\infty} \) such that the vectors \( \phi_n = C\psi_n \) form an orthonormal basis of \( L^2(\mathbb{R}, dx) \),

\[
\langle \phi_n \mid \phi_m \rangle = \langle C\psi_n \mid C\psi_m \rangle = \delta_{nm}, \quad n, m = 0, 1, 2, \ldots, \infty.
\]

Such a basis is easy to find and we shall construct one below. If \( \mathcal{H}_{\psi_n}, n = 0, 1, 2, \ldots, \) are the corresponding spaces of wavelet transforms and \( K_{\psi_n} \) the associated reproducing kernels, then \( \mathcal{H}_{\psi_n} \perp \mathcal{H}_{\psi_m} \), for \( n \neq m \), and
Decomposition of the space of all finite energy wavelet transforms

\[
\int \int d\mu(b'', a'') K_{\psi_n}(b, a; b'', a'') K_{\psi_m}(b'', a''; b', a') = \delta_{nm} K_{\psi_m}(b, a; b', a').
\]
Decomposition of the space of all finite energy wavelet transforms

\[ \int \int_{\mathcal{H}} d\mu(b'', a'') K_{\psi_n}(b, a; b'', a'') K_{\psi_m}(b'', a''; b', a') = \delta_{nm} K_{\psi_m}(b, a; b', a'). \]

More interestingly, it is possible to show that the complete decomposition,

\[ L^2(\mathcal{H}, d\mu) \simeq \bigoplus_{n=1}^{\infty} \mathcal{F}_\psi \psi_n, \]

of the space of all finite energy signals (on the parameter space \( \mathcal{H} \)) into an orthogonal direct sum of spaces of wavelet transforms, holds.
Decomposition of the space of all finite energy wavelet transforms

\[
\int \int_{\mathbb{H}} d\mu(b'', a'') \, K_{\psi_n}(b, a; b'', a'') \, K_{\psi_m}(b'', a''; b', a') = \delta_{nm} \, K_{\psi_m}(b, a; b', a').
\]

More interestingly, it is possible to show that the complete decomposition,

\[
L^2(\mathbb{H}, d\mu) \cong \bigoplus_{n=1}^{\infty} S\psi_n,
\]

of the space of all finite energy signals (on the parameter space $\mathbb{H}$) into an orthogonal direct sum of spaces of wavelet transforms, holds.

Thus, in an $L^2$-sense, any element $S \in L^2(\mathbb{H}, d\mu)$ has the orthogonal decomposition, into orthogonal wavelet transforms $S_n$, with respect to a basis of mother wavelets:

\[
S(b, a) = \bigoplus_{n=1}^{\infty} S_n(b, a), \quad \text{almost everywhere},
\]
Decomposition of the space of all finite energy wavelet transforms

This result, which can be proved by direct computation in the present case, is a particular example of a much more general result on the decomposition of the left regular representation of a group into irreducibles, as we have already seen. The components $S_n(b, a)$ have the form

$$S_n(b, a) = \langle U(b, a)\psi_n | s_n \rangle, \quad n = 0, 1, 2, \ldots$$
Decomposition of the space of all finite energy wavelet transforms

This result, which can be proved by direct computation in the present case, is a particular example of a much more general result on the decomposition of the left regular representation of a group into irreducibles, as we have already seen. The components \( S_n(b, a) \) have the form

\[
S_n(b, a) = \langle U(b, a)\psi_n | s_n \rangle, \quad n = 0, 1, 2, \ldots
\]

for some signal vectors \( s_n \in L^2(\mathbb{R}, dx) \), which, in general, are different for different \( n \). We also have the relations

\[
\int_{\mathbb{H}} d\mu(b', a') \, K_{\psi_n}(b, a; b', a') S_m(b', a') = \delta_{nm} \, S_m(b, a).
\]
Decomposition of the space of all finite energy wavelet transforms

This result, which can be proved by direct computation in the present case, is a particular example of a much more general result on the decomposition of the left regular representation of a group into irreducibles, as we have already seen. The components $S_n(b, a)$ have the form

$$S_n(b, a) = \langle U(b, a)\psi_n | s_n \rangle , \quad n = 0, 1, 2, \ldots$$

for some signal vectors $s_n \in L^2(\mathbb{R}, dx)$, which, in general, are different for different $n$. We also have the relations

$$\int \int_{\mathbb{H}} d\mu(b', a') \ K_{\psi_n}(b, a; b', a') S_m(b', a') = \delta_{nm} \ S_m(b, a) .$$

Finally, we construct an explicit example of a basis set of mother wavelets satisfying the orthogonality relations mentioned above. Let $H_n(\xi), \ n = 0, 1, 2, \ldots, \infty$, be the Hermite polynomials, normalized as
Decomposition of the space of all finite energy wavelet transforms

\[ \int_{\mathbb{R}} d\xi \ e^{-\xi^2} \ H_m(\xi) \ H_n(\xi) = \begin{cases} 
0, & \text{if } m \neq n, \\
n! \sqrt{\pi}, & \text{if } m = n.
\end{cases} \]
Decomposition of the space of all finite energy wavelet transforms

\[ \int_{\mathbb{R}} d\xi \ e^{-\xi^2} H_m(\xi) H_n(\xi) = \begin{cases} 0, & \text{if } m \neq n, \\ 2^n n! \sqrt{\pi}, & \text{if } m = n. \end{cases} \]

The first few are:

- \( H_0(\xi) = 1 \)
- \( H_1(\xi) = 2\xi \)
- \( H_2(\xi) = 4\xi^2 - 2 \)
- \( H_3(\xi) = 8\xi^3 - 12\xi \), etc.
Decomposition of the space of all finite energy wavelet transforms

\[ \int_{\mathbb{R}} d\xi \, e^{-\xi^2} \, H_m(\xi) \, H_n(\xi) = \begin{cases} 0, & \text{if } m \neq n, \\ 2^n n! \sqrt{\pi}, & \text{if } m = n. \end{cases} \]

The first few are:

\( H_0(\xi) = 1, \quad H_1(\xi) = 2\xi, \quad H_2(\xi) = 4\xi^2 - 2, \quad H_3(\xi) = 8\xi^3 - 12\xi, \quad \text{etc.} \)

In the Fourier domain, define

\[ \hat{\psi}_n(\xi) = \frac{1}{\pi^{\frac{3}{4}} 2^{\frac{n+1}{2}} \sqrt{n!}} |\xi|^{\frac{1}{2}} e^{-\frac{\xi^2}{2}} H_n(\xi). \]
Decomposition of the space of all finite energy wavelet transforms

\[
\int_{\mathbb{R}} d\xi \, e^{-\xi^2} \, H_m(\xi) \, H_n(\xi) = \begin{cases} 
0, & \text{if } m \neq n, \\
2^n n! \sqrt{\pi}, & \text{if } m = n.
\end{cases}
\]

The first few are:

\[
H_0(\xi) = 1, \quad H_1(\xi) = 2\xi, \\
H_2(\xi) = 4\xi^2 - 2, \quad H_3(\xi) = 8\xi^3 - 12\xi, \quad \text{etc.}
\]

In the Fourier domain, define

\[
\hat{\psi}_n(\xi) = \frac{1}{\sqrt{\frac{3}{4} 2^{n+1} n!}} \left| \xi \right|^{\frac{1}{2}} e^{-\frac{\xi^2}{2}} H_n(\xi).
\]

Then, it is easily verified that

\[
\|\hat{\psi}_n\|_{L^2(\mathbb{R}, d\xi)}^2 < \infty,
\]
Decomposition of the space of all finite energy wavelet transforms

and

$$\langle \hat{C}\hat{\psi}_m | \hat{C}\hat{\psi}_n \rangle = 2\pi \int_{\mathbb{R}} \frac{d\xi}{|\xi|} \hat{\psi}_m(\xi) \hat{\psi}_n(\xi) = \delta_{mn}.$$
Decomposition of the space of all finite energy wavelet transforms

and

$$\langle \hat{C} \hat{\psi}_m | \hat{C} \hat{\psi}_n \rangle = 2\pi \int_{\mathbb{R}} \frac{d\xi}{|\xi|} \hat{\psi}_m(\xi) \hat{\psi}_n(\xi) = \delta_{mn}.$$ 

Thus, in the inverse Fourier domain, the vectors $\psi_n$ are in the domain of the operator $C$, satisfying the condition for being mother wavelets, while from the well-known properties of Hermite polynomials, the vectors $\phi_n$ constitute an orthonormal basis of $L^2(\mathbb{R}, dx)$. 
Decomposition of the space of all finite energy wavelet transforms

\[ \langle \hat{C}\hat{\psi}_m | \hat{C}\hat{\psi}_n \rangle = 2\pi \int_{\mathbb{R}} \frac{d\xi}{|\xi|} \hat{\psi}_m(\xi) \hat{\psi}_n(\xi) = \delta_{mn}. \]

Thus, in the inverse Fourier domain, the vectors \( \psi_n \) are in the domain of the operator \( C \), satisfying the condition for being mother wavelets, while from the well-known properties of Hermite polynomials, the vectors \( \phi_n \) constitute an orthonormal basis of \( L^2(\mathbb{R}, dx) \). More generally, since the range of \( C \) is dense in \( L^2(\mathbb{R}, dx) \), we can take any orthonormal basis, \( \{\phi_n\}_{n=1}^{\infty} \) of \( L^2(\mathbb{R}, dx) \), chosen from vectors in this range and then \( \{\psi_n = C^{-1}\phi_n\}_{n=1}^{\infty} \) will be the desired wavelet basis.
Decomposition of the space of all finite energy wavelet transforms

and

\[ \langle \hat{C}\hat{\psi}_m | \hat{C}\hat{\psi}_n \rangle = 2\pi \int_{\mathbb{R}} \frac{d\xi}{|\xi|} \hat{\psi}_m(\xi) \hat{\psi}_n(\xi) = \delta_{mn}. \]

Thus, in the inverse Fourier domain, the vectors \( \psi_n \) are in the domain of the operator \( C \), satisfying the condition for being mother wavelets, while from the well-known properties of Hermite polynomials, the vectors \( \phi_n \) constitute an orthonormal basis of \( L^2(\mathbb{R}, dx) \). More generally, since the range of \( C \) is dense in \( L^2(\mathbb{R}, dx) \), we can take any orthonormal basis, \( \{ \phi_n \}_{n=1}^{\infty} \) of \( L^2(\mathbb{R}, dx) \), chosen from vectors in this range and then \( \{ \psi_n = C^{-1}\phi_n \}_{n=1}^{\infty} \) will be the desired wavelet basis.

We collect the above results into a theorem:

**Theorem**

*The wavelet transform of the space of signals \( L^2(\mathbb{R}, dx) \), with respect to the mother wavelet \( \psi \), is a closed subspace of \( L^2(\mathcal{H}, d\mu) \). This subspace has a reproducing kernel \( K_\psi \), which is the integral kernel of the projection operator,***
Theorem (Contd.)

\[ P_\psi : L^2(\mathbb{H}, d\mu) \to \mathcal{H}_\psi. \]

The Hilbert space \( L^2(\mathbb{H}, d\mu) \) can be completely decomposed into an orthogonal direct sum of an infinite number of subspaces \( \mathcal{H}_\psi_n \), each a space of wavelet transforms with respect to a mother wavelet \( \psi_n \). The vectors \( \psi_n \) are constructed by taking an orthonormal basis \( \{ \phi_n \}_{n=1}^{\infty} \) of \( L^2(\mathbb{R}, dx) \), chosen from the range of the Duflo-Moore operator \( C \), and writing \( \psi_n = C^{-1} \phi_n \).
Decomposition into orthogonal channels

Theorem (Contd.)

\( \mathbb{P}_\psi : L^2(\mathbb{H}, d\mu) \rightarrow \mathfrak{H}_\psi. \) The Hilbert space \( L^2(\mathbb{H}, d\mu) \) can be completely decomposed into an orthogonal direct sum of an infinite number of subspaces \( \mathfrak{H}_\psi_n \), each a space of wavelet transforms with respect to a mother wavelet \( \psi_n \).

The vectors \( \psi_n \) are constructed by taking an orthonormal basis \( \{ \phi_n \}_{n=1}^{\infty} \) of \( L^2(\mathbb{R}, dx) \), chosen from the range of the Duflo-Moore operator \( C \), and writing

\[ \psi_n = C^{-1}\phi_n. \]

The above theorem can be used to analyze a given wavelet transform into orthogonal channels. Since the mother wavelets \( \{ \psi_n \}_{n=1}^{\infty} \) form a complete, linearly independent set, any mother wavelet \( \psi \) can be written as a linear combination,

\[ \psi = \sum_{n=1}^{\infty} a_n \psi_n , \quad a_n = \langle \phi_n \mid C\psi \rangle = \langle \psi_n \mid C^2\psi \rangle. \]
Decomposition into orthogonal channels

Hence if \( s \in L^2(\mathbb{R}, dx) \) is any signal vector and \( S_\psi(b, a) \) its wavelet transform with respect to \( \psi \), then clearly

\[
S_\psi(b, a) = \sum_{n=1}^{\infty} S_n(b, a), \quad \text{where} \quad S_n(b, a) = a_n \langle U(b, a)\psi_n | s \rangle.
\]
Hence if \( s \in L^2(\mathbb{R}, dx) \) is any signal vector and \( S_\psi(b, a) \) its wavelet transform with respect to \( \psi \), then clearly

\[
S_\psi(b, a) = \sum_{n=1}^{\infty} S_n(b, a) , \quad \text{where} \quad S_n(b, a) = a_n \langle U(b, a)\psi_n | s \rangle .
\]

In this way, the wavelet transform of the signal \( S_\psi(b, a) \) has been decomposed into a set of mutually orthogonal wavelet transforms \( S_n(b, a) \) (of this same signal). We call this a decomposition into orthogonal channels. Note that although the wavelet transforms are orthogonal in \( L^2(\mathbb{H}, d\mu) \), the mother wavelets \( \psi_n \) are not orthogonal in \( L^2(\mathbb{R}, dx) \).
Localization operators

Let $\psi$ be a mother wavelet and $\mathcal{H}_\psi$ the corresponding space of wavelet transforms. Let $\Delta \subset \mathbb{H}$ be a measurable set (with respect to the measure $d\mu$).
Let $\psi$ be a mother wavelet and $\mathcal{H}_\psi$ the corresponding space of wavelet transforms. Let $\Delta \subset \mathbb{H}$ be a measurable set (with respect to the measure $d\mu$). We associate to this set an integral kernel $a^\Delta_{\psi} : \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{C}$:

$$a^\Delta_{\psi}(b, a; b', a') = \int \int_{\Delta} d\mu(b'', a'') K_{\psi}(b, a; b'', a'')K_{\psi}(b'', a''; b', a'),$$
Let $\psi$ be a mother wavelet and $\mathcal{H}_\psi$ the corresponding space of wavelet transforms. Let $\Delta \subset \mathbb{H}$ be a measurable set (with respect to the measure $d\mu$). We associate to this set an integral kernel $a^\Delta_{\psi} : \mathbb{H} \times \mathbb{H} \to \mathbb{C}$:

$$a^\Delta_{\psi}(b, a; b', a') = \int\int_{\Delta} d\mu(b'', a'') K_{\psi}(b, a; b'', a'')K_{\psi}(b'', a''; b', a'),$$

and an operator $a_{\psi}(\Delta)$ on $\mathcal{H}_\psi$ acting via this kernel:

$$(a_{\psi}(\Delta)S)(b, a) = \int\int_{\mathbb{H}} d\mu(b', a') a^\Delta_{\psi}(b, a; b', a')S(b', a'), \quad S \in \mathcal{H}_\psi.$$
Localization operators

Let $\psi$ be a mother wavelet and $\mathcal{H}_\psi$ the corresponding space of wavelet transforms. Let $\Delta \subset \mathbb{H}$ be a measurable set (with respect to the measure $d\mu$). We associate to this set an integral kernel $a^\Delta_\psi : \mathbb{H} \times \mathbb{H} \to \mathbb{C}$:

$$a^\Delta_\psi(b, a; b', a') = \int \int_{\Delta} d\mu(b'', a'') K_\psi(b, a; b'', a'') K_\psi(b'', a''; b', a'),$$

and an operator $a_\psi(\Delta)$ on $\mathcal{H}_\psi$ acting via this kernel:

$$(a_\psi(\Delta)S)(b, a) = \int \int_{\mathbb{H}} d\mu(b', a') a^\Delta_\psi(b, a; b', a')S(b', a'), \quad S \in \mathcal{H}_\psi.$$

If we compute the matrix element of this operator for the wavelet $S$, using the properties of the reproducing kernel, we easily obtain,

$$\langle S | a_\psi(\Delta)S \rangle = \int \int_{\Delta} d\mu(b, a) \ | S(b, a) |^2.$$
Localization operators

Let $\psi$ be a mother wavelet and $\mathcal{H}_\psi$ the corresponding space of wavelet transforms. Let $\Delta \subset \mathbb{H}$ be a measurable set (with respect to the measure $d\mu$). We associate to this set an integral kernel $a_\psi^\Delta : \mathbb{H} \times \mathbb{H} \to \mathbb{C}$:

$$a_\psi^\Delta (b, a; b', a') = \int_\Delta d\mu(b'', a'') K_\psi (b, a; b'', a'') K_\psi (b'', a''; b', a'),$$

and an operator $a_\psi(\Delta)$ on $\mathcal{H}_\psi$ acting via this kernel:

$$(a_\psi(\Delta)S)(b, a) = \int_{\mathbb{H}} d\mu(b', a') a_\psi^\Delta (b, a; b', a') S(b', a') , \quad S \in \mathcal{H}_\psi.$$

If we compute the matrix element of this operator for the wavelet $S$, using the properties of the reproducing kernel, we easily obtain,

$$\langle S | a_\psi(\Delta)S \rangle = \int_\Delta d\mu(b, a) | S(b, a) |^2.$$

which shows that this operator is bounded, positive and self-adjoint.
Localization operators

We call $a_\psi(\Delta)$ a localization operator, since in view of the above relation, the quantity

$$p_S(\Delta) = \frac{\langle S | a_\psi(\Delta) S \rangle}{\|S\|^2}$$

is the fraction of the wavelet transform which is localized in the region $\Delta$ of phase space.
Localization operators

We call $a_{\psi}(\Delta)$ a localization operator, since in view of the above relation, the quantity

$$p_S(\Delta) = \frac{\langle S \mid a_{\psi}(\Delta) S \rangle}{\| S \|^2}$$

is the fraction of the wavelet transform which is localized in the region $\Delta$ of phase space.

If $S(b, a) = \langle \psi_{b, a} \mid s \rangle$, then we shall also write $p_s(\Delta)$ for the above probability, for indeed, it measures the concentration of the phase space content (e.g., time-frequency content) of the signal $s$ in the region $\Delta$. 
Localization operators

We call \( a_\psi(\Delta) \) a **localization operator**, since in view of the above relation, the quantity

\[
p_S(\Delta) = \frac{\langle S | a_\psi(\Delta)S \rangle}{\|S\|^2}
\]

is the fraction of the wavelet transform which is localized in the region \( \Delta \) of phase space.

If \( S(b, a) = \langle \psi_{b,a} | s \rangle \), then we shall also write \( p_s(\Delta) \) for the above probability, for indeed, it measures the concentration of the phase space content (e.g., time-frequency content) of the signal \( s \) in the region \( \Delta \).

As a set function, \( p_S(\Delta) \) has the properties of a probability measure:

\[
p_S(\mathbb{H}) = 1 , \quad p_S(\emptyset) = 0 , \quad \emptyset = \text{null set} , \\
p_S\left(\bigcup_{i \in J} \Delta_i\right) = \sum_{i \in J} p_S(\Delta_i) , \quad \text{if} \quad \Delta_i \cap \Delta_j = \emptyset , \quad \text{whenever} \quad i \neq j ,
\]
Localization operators

\( J \) being some index set. Since this holds for all \( S \in \mathcal{H}_\psi \), we say that the operators \( a_\psi(\Delta) \) themselves constitute a positive operator-valued measure or POV-measure, satisfying the properties:

\[
\begin{align*}
a_\psi(\mathbb{H}) &= I_\psi, & a_\psi(\emptyset) &= 0, \\
a_\psi\left(\bigcup_{i \in J} \Delta_i \right) &= \sum_{i \in J} a_\psi(\Delta_i), & \text{if } \Delta_i \cap \Delta_j = \emptyset, \text{ whenever } i \neq j,
\end{align*}
\]

Preliminaries
The group theoretic meaning of wavelets
The one-dimensional affine group and wavelets
Phase space analysis and holomorphic wavelet transforms
Localization operators

$J$ being some index set. Since this holds for all $S \in \mathcal{F}_\psi$, we say that the operators $a_\psi(\Delta)$ themselves constitute a positive operator-valued measure or POV-measure, satisfying the properties:

$$a_\psi(\mathbb{H}) = I_\psi , \quad a_\psi(\emptyset) = 0 ,$$

$$a_\psi\left(\bigcup_{i \in J} \Delta_i\right) = \sum_{i \in J} a_\psi(\Delta_i) , \quad \text{if } \Delta_i \cap \Delta_j = \emptyset , \text{ whenever } i \neq j ,$$

where the sum above has to be understood in the weak sense.
Localization operators

\( J \) being some index set. Since this holds for all \( S \in \mathcal{H}_\psi \), we say that the operators \( a_\psi(\Delta) \) themselves constitute a positive operator-valued measure or POV-measure, satisfying the properties:

\[
a_\psi(\mathbb{H}) = I_\psi , \\
a_\psi(\emptyset) = 0 ,
\]

\[
a_\psi(\bigcup_{i \in J} \Delta_i) = \sum_{i \in J} a_\psi(\Delta_i) , \quad \text{if} \quad \Delta_i \cap \Delta_j = \emptyset , \quad \text{whenever} \quad i \neq j ,
\]

where the sum above has to be understood in the weak sense.

It is instructive to see how \( p_S(\Delta) \) changes if the set \( \Delta \) gets transformed under the action of the group \( G_{aff} \). Since, for any \((b_0, a_0) \in G_{aff}\),

\[
\langle U(b_0, a_0)\psi_{b,a} | \psi_{b',a'} \rangle_{L^2(\mathbb{R},dx)} = \langle \psi_{b,a} | U(b_0, a_0)^* \psi_{b',a'} \rangle_{L^2(\mathbb{R},dx)},
\]
Localization operators

\( J \) being some index set. Since this holds for all \( S \in \mathcal{F}_\psi \), we say that the operators \( a_\psi(\Delta) \) themselves constitute a positive operator-valued measure or POV-measure, satisfying the properties:

\[
\begin{align*}
a_\psi(\mathbb{H}) &= I_\psi, & a_\psi(\emptyset) &= 0, \\
a_\psi\left(\bigcup_{i \in J}\Delta_i\right) &= \sum_{i \in J} a_\psi(\Delta_i), & \text{if } \Delta_i \cap \Delta_j = \emptyset & \text{whenever } i \neq j,
\end{align*}
\]

where the sum above has to be understood in the weak sense.

It is instructive to see how \( p_S(\Delta) \) changes if the set \( \Delta \) gets transformed under the action of the group \( G_{\text{aff}} \). Since, for any \((b_0, a_0) \in G_{\text{aff}}\),

\[
\langle U(b_0, a_0)\psi_{b', a'} | U(b_0, a_0)^*\psi_{b', a'} \rangle_{L^2(\mathbb{R}, dx)} = \langle \psi_{b, a} | U(b_0, a_0)^*\psi_{b', a'} \rangle_{L^2(\mathbb{R}, dx)},
\]

using the group properties and the definition of the reproducing kernel, we find that it satisfies the following covariance property:
Localization operators

\[ K_\psi(b_0 + a_0 b, a_0 a; b', a') = K_\psi(b, a; \frac{b' - b_0}{a_0}, \frac{a}{a_0}) , \]

i.e.,

\[ K_\psi((b_0, a_0)(b, a); b', a') = K_\psi(b, a; (b_0, a_0)^{-1}(b', a')) . \]
Localization operators

\[ K_\psi(b_0 + a_0 b, a_0 a; b', a') = K_\psi(b, a; \frac{b' - b_0}{a_0}, \frac{a}{a_0}) , \]

i.e.,

\[ K_\psi((b_0, a_0)(b, a); b', a') = K_\psi(b, a; (b_0, a_0)^{-1}(b', a')) . \]

Let \((b_0, a_0)\Delta\) denote the translate of the set \(\Delta\) by \((b_0, a_0)\):

\[(b_0, a_0)\Delta = \{(b_0 + a_0 b, a_0 a) \in \mathbb{H} \mid (b, a) \in \Delta\} . \]
Localization operators

\[ K_\psi(b_0 + a_0 b, a_0 a; b', a') = K_\psi(b, a; \frac{b' - b_0}{a_0}, \frac{a}{a_0}) , \]

i.e.,

\[ K_\psi((b_0, a_0)(b, a); b', a') = K_\psi(b, a; (b_0, a_0)^{-1}(b', a')) . \]

Let \((b_0, a_0)\Delta\) denote the translate of the set \(\Delta\) by \((b_0, a_0)\):

\[ (b_0, a_0)\Delta = \{(b_0 + a_0 b, a_0 a) \in \mathbb{H} \mid (b, a) \in \Delta \} . \]

Then, taking note of the action of the left regular representation of \(G_{\text{aff}}\) on wavelet transforms and exploiting the invariance of the measure \(d\mu\), we easily find that

\[ \langle U_\psi(b, a)S|a_\psi(\Delta)U_\psi(b, a)S'\rangle = \langle S|a_\psi((b, a)^{-1}\Delta)S'\rangle , \quad S, S' \in \mathcal{H}_\psi , \]
Localization operators

i.e., we have the operator identity

\[ U_\psi(b, a)a_\psi(\Delta)U_\psi(b, a)^* = a_\psi((b, a)\Delta) . \]
Localization operators

i.e., we have the operator identity

\[ U_\psi(b, a)a_\psi(\Delta)U_\psi(b, a)^* = a_\psi((b, a)\Delta) . \]

This is a group covariance condition satisfied by the localization operators \( a_\psi(\Delta) \), and is generally known as an imprimitivity relation. For the probability measure \( p_S(\Delta) \), this condition implies the transformation property
Localization operators

i.e., we have the operator identity

$$ U_\psi(b, a) a_\psi(\Delta) U_\psi(b, a)^* = a_\psi((b, a)\Delta) . $$

This is a group covariance condition satisfied by the localization operators $a_\psi(\Delta)$, and is generally known as an imprimitivity relation. For the probability measure $p_\Sigma(\Delta)$, this condition implies the transformation property

$$ p_S((b, a)\Delta) = p_{U_\psi(b, a)^{-1}S}(\Delta) , \quad \text{or} \quad p_s((b, a)\Delta) = p_{U(b,a)^{-1}S}(\Delta) . $$
Localization operators

i.e., we have the operator identity

\[ U_\psi(b, a)a_\psi(\Delta)U_\psi(b, a)^* = a_\psi((b, a)\Delta) . \]

This is a group covariance condition satisfied by the localization operators \( a_\psi(\Delta) \), and is generally known as an imprimitivity relation. For the probability measure \( p_\mathcal{S}(\Delta) \), this condition implies the transformation property

\[ p_\mathcal{S}((b, a)\Delta) = p_{U_\psi(b, a)^{-1}S}(\Delta) , \quad \text{or}, \quad p_\mathcal{S}((b, a)\Delta) = p_{U(b, a)^{-1}s}(\Delta) . \]

Physically, the above relation means that the fraction of the signal \( s \), localized in the transformed set \((b, a)\Delta\), is the same as the fraction of the transformed signal \( U(b, a)^{-1}s \) localized in the original set \( \Delta \).
We turn our attention to a different way of understanding the wavelet transform, namely, as a function on a phase space.
We turn our attention to a different way of understanding the wavelet transform, namely, as a function on a phase space. First let us restrict the representation $\hat{U}(b, a)$ of the full affine group to the connected affine group $G_{\text{aff}}^+$, characterized by $a > 0$. We immediately see that this representation is no longer irreducible for this smaller group. Indeed, consider the two subspaces
We turn our attention to a different way of understanding the wavelet transform, namely, as a function on a phase space.

First let us restrict the representation $\hat{U}(b, a)$ of the full affine group to the connected affine group $G^+_{\text{aff}}$, characterized by $a > 0$. We immediately see that this representation is no longer irreducible for this smaller group. Indeed, consider the two subspaces

$$\hat{H}_+(\hat{\mathbb{R}}) = \{ \hat{f} \in L^2(\hat{\mathbb{R}}, d\xi) \mid \hat{f}(\xi) = 0, \forall \xi \leq 0 \},$$

$$\hat{H}_-(\hat{\mathbb{R}}) = \{ \hat{f} \in L^2(\hat{\mathbb{R}}, d\xi) \mid \hat{f}(\xi) = 0, \forall \xi \geq 0 \},$$

of the carrier space $L^2(\hat{\mathbb{R}}, d\xi)$ of the representation $\hat{U}(b, a)$. 

Restriction to $G^+_{\text{aff}}$
Restriction to $G_{\text{aff}}^+$

We turn our attention to a different way of understanding the wavelet transform, namely, as a function on a phase space. First let us restrict the representation $\hat{U}(b, a)$ of the full affine group to the connected affine group $G_{\text{aff}}^+$, characterized by $a > 0$. We immediately see that this representation is no longer irreducible for this smaller group. Indeed, consider the two subspaces

$$\hat{\mathcal{H}}_+(\hat{\mathbb{R}}) = \left\{ \hat{f} \in L^2(\hat{\mathbb{R}}, d\xi) \mid \hat{f}(\xi) = 0, \forall \xi \leq 0 \right\},$$

$$\hat{\mathcal{H}}_-(\hat{\mathbb{R}}) = \left\{ \hat{f} \in L^2(\hat{\mathbb{R}}, d\xi) \mid \hat{f}(\xi) = 0, \forall \xi \geq 0 \right\},$$

of the carrier space $L^2(\hat{\mathbb{R}}, d\xi)$ of the representation $\hat{U}(b, a)$. It is evident that vectors in any one of these subspaces are mapped to vectors in the same subspace under the action of the operators $\hat{U}(b, a)$, for $(b, a) \in G_{\text{aff}}^+$. 

We turn our attention to a different way of understanding the wavelet transform, namely, as a function on a phase space. First let us restrict the representation $\hat{U}(b, a)$ of the full affine group to the connected affine group $G^+_{\text{aff}}$, characterized by $a > 0$. We immediately see that this representation is no longer irreducible for this smaller group. Indeed, consider the two subspaces

\[
\begin{align*}
\hat{\mathcal{H}}_+(\mathbb{R}) &= \{ \hat{f} \in L^2(\mathbb{R}, d\xi) \mid \hat{f}(\xi) = 0, \forall \xi \leq 0 \}, \\
\hat{\mathcal{H}}_-(\mathbb{R}) &= \{ \hat{f} \in L^2(\mathbb{R}, d\xi) \mid \hat{f}(\xi) = 0, \forall \xi \geq 0 \},
\end{align*}
\]

of the carrier space $L^2(\mathbb{R}, d\xi)$ of the representation $\hat{U}(b, a)$. It is evident that vectors in any one of these subspaces are mapped to vectors in the same subspace under the action of the operators $\hat{U}(b, a)$, for $(b, a) \in G^+_{\text{aff}}$. This means that each one of these subspaces carries a unitary representation of this smaller group.
Restriction to $G_{aff}$

We can show that both these representations, which we denote by $\hat{U}_+(b, a)$ and $\hat{U}_-(b, a)$, respectively, are irreducible but unitarily inequivalent.
Restriction to $G_{\text{aff}}^+$

We can show that both these representations, which we denote by $\hat{U}_+ (b, a)$ and $\hat{U}_- (b, a)$, respectively, are irreducible but unitarily inequivalent. In fact, these are the only two nontrivial, unitary irreducible representations of $G_{\text{aff}}^+$. Moreover, the Hilbert space $L^2 (\hat{\mathbb{R}}, d\xi)$ is the orthogonal direct sum of these two subspaces:

$$L^2 (\hat{\mathbb{R}}, d\xi) = \hat{\mathcal{H}}_+ (\hat{\mathbb{R}}) \oplus \hat{\mathcal{H}}_- (\hat{\mathbb{R}}).$$
Restriction to $G_{\text{aff}}^+$

We can show that both these representations, which we denote by $\hat{\mathcal{U}}_+(b, a)$ and $\hat{\mathcal{U}}_-(b, a)$, respectively, are irreducible but unitarily inequivalent. In fact, these are the only two nontrivial, unitary irreducible representations of $G_{\text{aff}}^+$. Moreover, the Hilbert space $L^2(\hat{\mathbb{R}}, d\xi)$ is the orthogonal direct sum of these two subspaces:

$$L^2(\hat{\mathbb{R}}, d\xi) = \hat{\mathcal{H}}_+(\hat{\mathbb{R}}) \oplus \hat{\mathcal{H}}_-(\hat{\mathbb{R}}).$$

In other words, we have here a complete decomposition of the representation $\hat{\mathcal{U}}(b, a)$ of the connected affine group $G_{\text{aff}}^+$ and we write

$$\hat{\mathcal{U}}(b, a) = \hat{\mathcal{U}}_+(b, a) \oplus \hat{\mathcal{U}}_-(b, a).$$
We can show that both these representations, which we denote by \( \hat{U}_+(b, a) \) and \( \hat{U}_-(b, a) \), respectively, are irreducible but unitarily inequivalent. In fact, these are the only two nontrivial, unitary irreducible representations of \( G_{aff}^+ \). Moreover, the Hilbert space \( L^2(\hat{\mathbb{R}}, d\xi) \) is the orthogonal direct sum of these two subspaces:

\[
L^2(\hat{\mathbb{R}}, d\xi) = \hat{\mathcal{H}}_+(\hat{\mathbb{R}}) \oplus \hat{\mathcal{H}}_-(\hat{\mathbb{R}}).
\]

In other words, we have here a complete decomposition of the representation \( \hat{U}(b, a) \) of the connected affine group \( G_{aff}^+ \) and we write

\[
\hat{U}(b, a) = \hat{U}_+(b, a) \oplus \hat{U}_-(b, a).
\]

In the inverse Fourier domain, the representation \( U(b, a) \) similarly breaks up (because of the unitarity of the Fourier transform) into two irreducible representations, \( U_+(b, a) \) and \( U_-(b, a) \), on the two subspaces.
Holomorphic wavelet transforms

\[ H_+ (\mathbb{R}) = \{ f \in L^2 (\mathbb{R}, dx) \mid \hat{f}(\xi) = 0, \forall \xi \leq 0 \}, \]

\[ H_- (\mathbb{R}) = \{ f \in L^2 (\mathbb{R}, dx) \mid \hat{f}(\xi) = 0, \forall \xi \geq 0 \}, \]

of \( L^2 (\mathbb{R}, dx) \), respectively. These spaces are known as Hardy spaces.
Holomorphic wavelet transforms

\[ \mathcal{H}_+^0(\mathbb{R}) = \{ f \in L^2(\mathbb{R}, dx) \mid \hat{f}(\xi) = 0, \ \forall \xi \leq 0 \}, \]
\[ \mathcal{H}_-^0(\mathbb{R}) = \{ f \in L^2(\mathbb{R}, dx) \mid \hat{f}(\xi) = 0, \ \forall \xi \geq 0 \}, \]

of \( L^2(\mathbb{R}, dx) \), respectively. These spaces are known as Hardy spaces.

Elements of \( \mathcal{H}_+^0(\mathbb{R}) \) (respectively, \( \mathcal{H}_-^0(\mathbb{R}) \)) extend to functions analytic in the upper (respectively, lower) complex half-plane, and accordingly they are called upper (respectively, lower) analytic signals.
Holomorphic wavelet transforms

\[ \mathcal{H}_+(\mathbb{R}) = \{ f \in L^2(\mathbb{R}, dx) \mid \hat{f}(\xi) = 0, \forall \xi \leq 0 \}, \]
\[ \mathcal{H}_-(\mathbb{R}) = \{ f \in L^2(\mathbb{R}, dx) \mid \hat{f}(\xi) = 0, \forall \xi \geq 0 \}, \]

of \( L^2(\mathbb{R}, dx) \), respectively. These spaces are known as Hardy spaces. Elements of \( \mathcal{H}_+(\mathbb{R}) \) (respectively, \( \mathcal{H}_-(\mathbb{R}) \)) extend to functions analytic in the upper (respectively, lower) complex half-plane, and accordingly they are called upper (respectively, lower) analytic signals.

It is an interesting fact that for appropriate choices of mother wavelets, the wavelet transforms of signals in the spaces \( \mathcal{H}_\pm(\mathbb{R}) \) can (up to a factor) become holomorphic functions. Indeed, for any \( \nu \geq 0 \), consider the mother wavelet \( \hat{\psi} \in \mathcal{H}_+(\mathbb{R}) \),

\[ \hat{\psi}(\xi) = \begin{cases} \left[ \frac{2^\nu}{\pi \Gamma(\nu+1)} \right]^{\frac{1}{2}} \xi^{\frac{\nu+1}{2}} e^{-\xi}, & \xi \in (0, \infty) , \\ 0 , & \text{otherwise} , \end{cases} \quad \| \mathcal{C}\hat{\psi} \|^2 = 1 , \]
Holomorphic wavelet transforms

\[ \Gamma(\nu + 1) \] being the usual Gamma function.
Holomorphic wavelet transforms

$\Gamma(\nu + 1)$ being the usual Gamma function.

The wavelets for this vector have the form

$$\widehat{\psi}_{b,a}(\xi) = \left[ \frac{2^\nu}{\pi \Gamma(\nu + 1)} \right]^{1/2} a^{1+\nu/2} \xi^{\nu+1/2} e^{-i\xi z}, \quad \text{where, } z = b + ia,$$
Holomorphic wavelet transforms

$\Gamma(\nu + 1)$ being the usual Gamma function.

The wavelets for this vector have the form

$$\hat{\psi}_{b,a}(\xi) = \left[ \frac{2^\nu}{\pi \Gamma(\nu + 1)} \right]^{\frac{1}{2}} a^{1+\frac{\nu}{2}} \xi^{\frac{\nu+1}{2}} e^{-i\xi z}, \quad \text{where, } z = b + ia,$$

and the reproducing kernel is

$$K_\psi(b, a; b', a') = \langle \hat{\psi}_{b,a} | \hat{\psi}_{b',a'} \rangle = \frac{2^\nu (\nu + 1)}{i^{2+\nu} \pi} \frac{(aa')^{1+\nu}}{(\bar{z}' - z)^{2+\nu}}.$$
Holomorphic wavelet transforms

\[ \Gamma(\nu + 1) \] being the usual Gamma function.

The wavelets for this vector have the form

\[ \hat{\psi}_{b,a}(\xi) = \left[ \frac{2^\nu}{\pi \Gamma(\nu + 1)} \right]^{1/2} a^{1 + \frac{\nu}{2}} \xi^{\frac{\nu + 1}{2}} e^{-i\xi z}, \quad \text{where, } z = b + ia, \]

and the reproducing kernel is

\[ K_\psi(b, a; b', a') = \langle \hat{\psi}_{b,a} | \hat{\psi}_{b',a'} \rangle = \frac{2^\nu (\nu + 1)}{i^{2+\nu} \pi} \frac{(aa')^{1+\frac{\nu}{2}}}{(z' - z)^{2+\nu}}. \]

Computing the wavelet transform of a signal \( \hat{s} \in \mathcal{S}_+(\mathbb{R}) \),

\[ S(b, a) = \langle \hat{\psi}_{b,a} | \hat{s} \rangle = \left[ \frac{2^\nu}{\pi \Gamma(\nu + 1)} \right]^{1/2} a^{1 + \frac{\nu}{2}} \int_0^\infty d\xi \xi^{\frac{1+\nu}{2}} e^{i\xi z} \hat{s}(\xi). \]
Holomorphic wavelet transforms

\[ \Gamma(\nu + 1) \] being the usual Gamma function.

The wavelets for this vector have the form

\[ \hat{\psi}_{b,a}(\xi) = \left[ \frac{2^{\nu}}{\pi \Gamma(\nu + 1)} \right]^{\frac{1}{2}} a^{1+\frac{\nu}{2}} \xi^{\frac{\nu+1}{2}} e^{-i\xi z}, \quad \text{where, } z = b + ia, \]

and the reproducing kernel is

\[ K_{\psi}(b, a ; b', a') = \langle \hat{\psi}_{b,a} | \hat{\psi}_{b',a'} \rangle = \frac{2^{\nu} (\nu + 1)}{i^{2+\nu} \pi} \frac{(aa')^{1+\frac{\nu}{2}}}{(\bar{z}' - z)^{2+\nu}}. \]

Computing the wavelet transform of a signal \( \hat{s} \in \mathcal{S}_+(\mathbb{R}) \),

\[ S(b, a) = \langle \hat{\psi}_{b,a} | \hat{s} \rangle = \left[ \frac{2^{\nu}}{\pi \Gamma(\nu + 1)} \right]^{\frac{1}{2}} a^{1+\frac{\nu}{2}} \int_0^\infty d\xi \xi^{\frac{1+\nu}{2}} e^{i\xi z} \hat{s}(\xi). \]

This, apart from the factor \( a^{1+\frac{\nu}{2}} \), is a holomorphic function of \( z = b + ia \).
Holomorphic wavelet transforms

Indeed, writing this function as

\[ F(z) = \left[ \frac{2^\nu}{\pi \Gamma(\nu + 1)} \right]^{-\frac{1}{2}} a^{-(1+\frac{\nu}{2})} S(b, a) \]

\[ = \int_{0}^{\infty} d\xi \ e^{i\xi z} \xi^{\frac{1+\nu}{2}} \hat{s}(\xi), \quad z = b + ia, \]
Indeed, writing this function as

\[
F(z) = \left[ \frac{2^\nu}{\pi \Gamma(\nu + 1)} \right]^{-\frac{1}{2}} a^{-(1 + \nu)} S(b, a)
\]

\[
= \int_0^\infty d\xi \ e^{i\xi z} \xi^{1+\nu} \hat{s}(\xi), \quad z = b + ia,
\]

we have,

\[
|F(z)|^2 = \left| \int_0^\infty d\xi \ \xi^{\frac{1+\nu}{2}} \ e^{i\xi z} \hat{s}(\xi) \right|^2
\]

\[
\leq \left\| \hat{s} \right\|^2 \int_0^\infty d\xi \ \xi^{1+\nu} \ e^{-2\xi a}, \quad \text{by the Cauchy-Schwarz inequality}
\]

\[
= \left\| \hat{s} \right\|^2 \frac{\Gamma(\nu + 2)}{(2a)^{2+\nu}}.
\]
Holomorphic wavelet transforms

Thus, the convergence of the integral representing $F(z)$ is uniform in any bounded open set containing $z$ and differentiation with respect to it, under the integral sign, is permissible, implying that $F$ is holomorphic in $z$, on the complex, upper-half plane which we identify with $\mathbb{H}_+ = \mathbb{R} \times \mathbb{R}^*$ (where, $\mathbb{R}^* = (0, \infty)$). We shall call $F(z)$ a holomorphic wavelet transform.
Holomorphic wavelet transforms

Thus, the convergence of the integral representing $F(z)$ is uniform in any bounded open set containing $z$ and differentiation with respect to it, under the integral sign, is permissible, implying that $F$ is holomorphic in $z$, on the complex, upper-half plane which we identify with $\mathbb{H}_+ = \mathbb{R} \times \mathbb{R}^+$ (where, $\mathbb{R}^+ = (0, \infty)$). We shall call $F(z)$ a holomorphic wavelet transform. Furthermore, since

$$\int \int_{\mathbb{H}_+} \frac{db \ da}{a^2} \ |S(b, a)|^2 = \int \int_{\mathbb{H}_+} d\mu_\nu(z, \overline{z}) \ |F(z)|^2,$$
Holomorphic wavelet transforms

Thus, the convergence of the integral representing $F(z)$ is uniform in any bounded open set containing $z$ and differentiation with respect to it, under the integral sign, is permissible, implying that $F$ is holomorphic in $z$, on the complex, upper-half plane which we identify with $\mathbb{H}_+ = \mathbb{R} \times \mathbb{R}_+^*$ (where, $\mathbb{R}_+^* = (0, \infty)$). We shall call $F(z)$ a holomorphic wavelet transform. Furthermore, since

$$\int \int_{\mathbb{H}_+} \frac{db\, da}{a^2} \left| S(b, a) \right|^2 = \int \int_{\mathbb{H}_+} d\mu_{\nu}(z, \bar{z}) \left| F(z) \right|^2,$$

where we have introduced the measure,

$$d\mu_{\nu}(z, \bar{z}) = \frac{(2a)^\nu}{\pi \Gamma(\nu + 1)} \, db \, da,$$
Holomorphic wavelet transforms

Thus, the convergence of the integral representing $F(z)$ is uniform in any bounded open set containing $z$ and differentiation with respect to it, under the integral sign, is permissible, implying that $F$ is holomorphic in $z$, on the complex, upper-half plane which we identify with $\mathbb{H}_+ = \mathbb{R} \times \mathbb{R}_+^*$ (where, $\mathbb{R}_+^* = (0, \infty)$). We shall call $F(z)$ a holomorphic wavelet transform. Furthermore, since

$$\int \int_{\mathbb{H}_+} \frac{db \ da}{a^2} \ | S(b, a) |^2 = \int \int_{\mathbb{H}_+} d\mu_\nu(z, \bar{z}) \ | F(z) |^2 ,$$

where we have introduced the measure,

$$d\mu_\nu(z, \bar{z}) = \frac{(2a)^\nu}{\pi \Gamma(\nu + 1)} \ db \ da ,$$

the set of all holomorphic wavelet transforms constitute a closed subspace of of the Hilbert space $L^2(\mathbb{H}_+, d\mu_\nu)$, of functions supported on the upper half plane. We denote this subspace by $\mathcal{H}_\nu^{\text{hol}}$. 
Holomorphic wavelet transforms

Note that $\mathcal{H}_\text{hol}^\nu$ is also a reproducing kernel Hilbert space, with kernel

$$K_\text{hol}^\nu(z, \bar{z}') = \frac{\Gamma(\nu + 2)}{i^{2+\nu}} \frac{1}{(z - \bar{z}')^{2+\nu}},$$
Holomorphic wavelet transforms

Note that $\mathcal{H}^\nu_{\text{hol}}$ is also a reproducing kernel Hilbert space, with kernel

$$K^\nu_{\text{hol}}(z, \bar{z}') = \frac{\Gamma(\nu + 2)}{i^{2+\nu}} \frac{1}{(z - \bar{z}')^{2+\nu}} ,$$

such that

$$\int\int_{\mathbb{H}_+} d\mu_{\nu}(z, \bar{z}) K^\nu_{\text{hol}}(z, \bar{z}') F(z')$$

$$= \frac{2\nu (\nu + 1)}{i^{2+\nu}} \int\int_{\mathbb{H}_+} a^\nu \ da \ db \ \frac{F(z')}{(z - \bar{z}')^{2+\nu}} = F(z) .$$
Holomorphic wavelet transforms

Note that $\mathcal{H}_{\text{hol}}$ is also a reproducing kernel Hilbert space, with kernel

$$K_{\text{hol}}(z, \bar{z}') = \frac{\Gamma(\nu + 2)}{i^{2+\nu}} \frac{1}{(z - \bar{z}')^{2+\nu}},$$

such that

$$\int_{\mathbb{H}_+} \int_{\mathbb{H}_+} d\mu(\nu, \bar{z}) \ K_{\text{hol}}(z, \bar{z}') \ F(z')$$

$$= \frac{2^\nu (\nu + 1)}{i^{2+\nu}} \int_{\mathbb{H}_+} a^\nu \ da \ db \ \frac{F(z')}{(z - \bar{z}')^{2+\nu}} = F(z).$$

The vectors $\eta_z, \ z \in \mathbb{H}_+$, with

$$\eta_z(z') = K_{\text{hol}}(z', \bar{z}),$$

which are the holomorphic wavelets, are again overcomplete in $\mathcal{H}_{\text{hol}}$ and satisfy the resolution of the identity:
Holomorphic wavelet transforms

$$\int \int_{\mathbb{H}^+} d\mu_\nu(z, \bar{z}) \ |\eta_z\rangle\langle\eta_z| = I_\nu^{\text{hol}} \quad (= \text{identity operator of } \mathcal{H}_\nu^{\text{hol}}).$$
Holomorphic wavelet transforms

\[
\int \int_{H^+} d\mu_\nu (z, \bar{z}) \ | \eta_z \rangle \langle \eta_z | = l^\nu_{\text{hol}} \qquad (= \text{identity operator of } H^\nu_{\text{hol}}).
\]

There is also the holomorphic representation of \( G^+_{\text{aff}} \) on \( H^\nu_{\text{hol}} \), unitarily equivalent to \( U_+(b, a) \). Denoting this by \( U^\nu_{\text{hol}}(b, a) \), we easily compute its action:
Holomorphic wavelet transforms

\[
\int \int_{\mathbb{H}^+} d\mu_\nu(z, \bar{z}) \, |\eta_z\rangle \langle \eta_z| = l^\nu_{\text{hol}} \quad (= \text{identity operator of } \mathcal{H}^\nu_{\text{hol}}).
\]

There is also the holomorphic representation of \( G^+_{\text{aff}} \) on \( \mathcal{H}^\nu_{\text{hol}} \), unitarily equivalent to \( U_+(b, a) \). Denoting this by \( U^\nu_{\text{hol}}(b, a) \), we easily compute its action:

\[
(U^\nu_{\text{hol}}(b, a)F)(z) = a^{-(1+\nu/2)} F \left( \frac{z - b}{a} \right).
\]
Holomorphic wavelet transforms

$$\int \int_{\mathbb{H}^+} d\mu_\nu(z, \bar{z}) \ |\eta_z\rangle\langle\eta_z| = l^\nu_{\text{hol}} \quad (= \text{identity operator of } \mathcal{H}^\nu_{\text{hol}}).$$

There is also the holomorphic representation of $G^+_\text{aff}$ on $\mathcal{H}^\nu_{\text{hol}}$, unitarily equivalent to $U_+(b, a)$. Denoting this by $U^\nu_{\text{hol}}(b, a)$, we easily compute its action:

$$(U^\nu_{\text{hol}}(b, a)F)(z) = a^{-\left(1 + \frac{\nu}{2}\right)} F\left(\frac{z - b}{a}\right).$$

The appearance of the holomorphic Hilbert spaces of wavelet transforms is remarkable in many ways.
Holomorphic wavelet transforms

\[ \int \int_{\mathbb{H}_+} d\mu_\nu(z, \bar{z}) \ | \eta_z \rangle \langle \eta_z | = l_{\nu}^{\text{hol}} \quad (= \text{identity operator of } \mathcal{H}_\nu^{\text{hol}}). \]

There is also the holomorphic representation of \( G_{\text{aff}}^+ \) on \( \mathcal{H}_\nu^{\text{hol}} \), unitarily equivalent to \( U_+(b, a) \). Denoting this by \( U_\nu^{\text{hol}}(b, a) \), we easily compute its action:

\[ (U_\nu^{\text{hol}}(b, a)F)(z) = a^{-(1 + \nu/2)} F \left( \frac{z - b}{a} \right). \]

The appearance of the holomorphic Hilbert spaces of wavelet transforms is remarkable in many ways.

First of all, their existence is related to a geometrical property of the half plane \( \mathbb{H}_+ \), which is a differential manifold with a complex Kähler structure.
Holomorphic wavelet transforms

\[ \int \int_{\mathbb{H}^+} d\mu(z, \bar{z}) \ |\eta_z\rangle\langle\eta_z| = l^\nu_{\text{hol}} \quad ( = \text{identity operator of } \mathcal{H}^\nu_{\text{hol}}) . \]

There is also the holomorphic representation of \( G_{\text{aff}}^+ \) on \( \mathcal{H}^\nu_{\text{hol}} \), unitarily equivalent to \( U_+(b, a) \). Denoting this by \( U^\nu_{\text{hol}}(b, a) \), we easily compute its action:

\[ (U^\nu_{\text{hol}}(b, a)F)(z) = a^{-(1+\nu/2)} F \left( \frac{z-b}{a} \right) . \]

The appearance of the holomorphic Hilbert spaces of wavelet transforms is remarkable in many ways.

First of all, their existence is related to a geometrical property of the half plane \( \mathbb{H}^+ \), which is a differential manifold with a complex Kähler structure.

This means, from a physical point of view, that it has all the properties of being a phase space of a classical mechanical system and additionally, that this phase space can be given a complex structure (consistent with its geometry).
Complex structure of phase space

In particular, it has a metric and a preferred differential two-form, which gives rise to the invariant measure $d\mu$ and using which classical mechanical quantities, such as Poisson brackets, may be defined.
In particular, it has a metric and a preferred differential two-form, which gives rise to the invariant measure $d\mu$ and using which classical mechanical quantities, such as Poisson brackets, may be defined. We will not go into the details of this here, but only point out the existence of a potential function in this context. Consider the function,

$$\Phi(z, \bar{z}') = -\log[-(z - \bar{z}')^2].$$

This function is called a Kähler potential for the space $\mathbb{H}_+$ and it generates all the interesting quantities characterizing its geometry, such as the invariant two-form and the invariant measure. Indeed, we immediately verify that,

$$e^{(1+\nu/2)} \Phi(z, \bar{z}') = \frac{i^{2-\nu}}{\Gamma(\nu + 2)} K_{\text{hol}}^\nu(z, \bar{z}').$$
In particular, it has a metric and a preferred differential two-form, which gives rise to the invariant measure $d\mu$ and using which classical mechanical quantities, such as Poisson brackets, may be defined. We will not go into the details of this here, but only point out the existence of a potential function in this context. Consider the function,

$$\Phi(z, \bar{z}') = -\log[-(z - \bar{z}')^2] .$$

This function is called a Kähler potential for the space $\mathbb{H}_+$ and it generates all the interesting quantities characterizing its geometry, such as the invariant two-form and the invariant measure. Indeed, we immediately verify that,

$$e^{(1+\frac{\nu}{2})} \Phi(z, \bar{z}') = \frac{i^{2-\nu}}{\Gamma(\nu + 2)} K_{\text{hol}}^{\nu}(z, \bar{z}') .$$

Next we define,

$$\Omega(z, \bar{z}) := \frac{1}{i} \frac{\partial^2 \Phi(z, \bar{z})}{\partial z \partial \bar{z}} \; dz \wedge d\bar{z} = \frac{db \wedge da}{a^2} ,$$
Complex structure of phase space

which is the invariant two-form (under the action of $G^\text{aff}$).
which is the invariant two-form (under the action of $G^+_{\text{aff}}$).

This gives the invariant measure $d\mu$ of the group and furthermore,

$$e^{-(1+\nu/2)\Phi(z,z)}\Omega = 4(-1)^\nu (2a)^\nu db \wedge da,$$
Complex structure of phase space

which is the invariant two-form (under the action of $G_{\text{aff}}^+$).

This gives the invariant measure $d\mu$ of the group and furthermore,

$$e^{-\left(1 + \frac{\nu}{2}\right) \Phi(z,\bar{z})} \Omega = 4(-1)^{\nu} (2a)^{\nu} \, db \wedge da,$$

from which follows the measure with respect to which the holomorphic functions $F(z)$ are square integrable and form a Hilbert space.
Complex structure of phase space

which is the invariant two-form (under the action of $G_{\text{aff}}^+$).
This gives the invariant measure $d\mu$ of the group and furthermore,

$$e^{-(1+\frac{\nu}{2})\phi(z,\bar{z})} \Omega = 4(-1)^\nu (2a)^\nu db \wedge da,$$

from which follows the measure with respect to which the holomorphic functions $F(z)$ are square integrable and form a Hilbert space. It ought to be emphasized here that $H_{\text{hol}}^\nu$ contains all holomorphic functions in $L^2(\mathbb{H}_+, d\mu_\nu)$. 
which is the invariant two-form (under the action of $G_{\text{aff}}^+$).

This gives the invariant measure $d\mu$ of the group and furthermore,

$$e^{-(1+\nu^2)}\Phi(z,\bar{z})\,\Omega = 4(-1)^\nu (2a)^\nu \, db \wedge da,$$

from which follows the measure with respect to which the holomorphic functions $F(z)$ are square integrable and form a Hilbert space. It ought to be emphasized here that $\mathcal{G}_{\text{hol}}^\nu$ contains all holomorphic functions in $L^2(\mathbb{H}^+, \, d\mu_\nu)$. Note also that any such function can be obtained by computing the Fourier transform of a function $f(\xi) = \xi^{\frac{1+\nu}{2}} \, \widehat{s}(\xi)$ and then analytically continuing it to the upper half plane, where $\widehat{s}$ is a signal in the Fourier domain, with support in $(0, \infty)$. 

S. Twareque Ali

Wavelets and Coherent States
which is the invariant two-form (under the action of $G_{\text{aff}}^+$).
This gives the invariant measure $d\mu$ of the group and furthermore,

$$e^{-(1+\frac{\nu}{2}) \Phi(z,z)} \Omega = 4(-1)^\nu (2a)^\nu \, db \wedge da,$$

from which follows the measure with respect to which the holomorphic functions $F(z)$ are square integrable and form a Hilbert space. It ought to be emphasized here that $\mathcal{H}_\nu^\text{hol}$ contains all holomorphic functions in $L^2(\mathbb{H}_+, d\mu_\nu)$.

Note also that any such function can be obtained by computing the Fourier transform of a function $f(\xi) = \xi^{1+\frac{\nu}{2}} \hat{s}(\xi)$ and then analytically continuing it to the upper half plane, where $\hat{s}$ is a signal in the Fourier domain, with support in $(0, \infty)$.

Additionally, it ought to be noted that, for each $\nu > 0$ we get a family of holomorphic wavelet transforms, so that depending on the value of $\nu$, the same signal $s$ can be represented by different holomorphic functions on phase space.