THE COMPLETION OF A C*-ALGEBRA WITH A LOCALLY CONVEX TOPOLOGY

F. BAGARELLO, M. FRAGOULOPoulos, A. INOUE and C. TRAPANI

Communicated by Editor

Abstract. There are examples of C*-algebras A that accept a locally convex ∗-topology τ coarser than the given one, such that \(A[\tau] \) (the completion of A with respect to \(\tau \)) to be a GB*-algebra. The multiplication of \(A[\tau] \) may be or not be jointly continuous. In the second case, \(A[\tau] \) may fail being a locally convex ∗-algebra, but it is a partial ∗-algebra. In both cases the structure and the representation theory of \(A[\tau] \) are investigated. If \(\overline{A^+}[\tau] \) denotes the τ-closure of the positive cone \(A^+ \) of the given C*-algebra A, then the property \(\overline{A^+}[\tau] \cap (-\overline{A^+}[\tau]) = \{0\} \) is decisive for the existence of certain faithful ∗-representations of the corresponding ∗-algebra \(A[\tau] \).

1. Introduction

A mapping \(p \) of a ∗-subalgebra \(D(p) \) of a ∗-algebra A into \(\mathbb{R}_+ = [0, \infty) \) is said to be an unbounded C*- (semi)norm if it is a C*- (semi)norm on \(D(p) \). Unbounded C*-seminorms on ∗-algebras have appeared in many mathematical and physical subjects (for example, locally convex ∗-algebras, the moment problem, the quantum field theory etc.; see, e.g., [1, 18, 31, 33]). But, a systematical study seems far to be complete (cf. also [19], Introduction). So, we have tried to study methodically unbounded C*-seminorms and to apply such studies to those locally convex ∗-algebras that accept such C*-seminorms [8, 11, 12, 13]. A locally convex ∗-algebra is a ∗-algebra which is also a Hausdorff locally convex space such that the multiplication is separately continuous and the involution is continuous. The studies of locally convex (∗)-algebras started with those of locally m-convex (∗)-algebras by R. Arens [7] and E.A. Michael [25], in 1952. In fact, the notion of

Keywords: GB*-algebra, unbounded C*-seminorm, partial ∗-algebra.

Mathematics Subject Classification (2000): 46K10, 47L60.

The second author thankfully acknowledges partial support of this work by the Special Research Account: Grant Nr 70/4/5645, University of Athens.
a locally m-convex algebra, was introduced by R. Arens [6], in 1946. For a complete account on locally m-convex algebras, see [26]. A locally convex *-algebra $A[\tau]$ is said to be locally C^*-convex if the topology τ determines the topology τ'' and it is denoted by $A[\tau]$. A complete locally C^*-convex algebra is said to be a pro-C^*-algebra [27] (or a locally C^*-algebra [22]). Every pro-C^*-algebra is a projective limit of C^*-algebras. But, it is difficult to study general locally convex *-algebras which are not locally C^*-convex, even if the multiplication is jointly continuous. So, the third author together with K.-D. Kürsten defined and studied recently in [24] the so-called C^*-like locally convex *-algebras, that read as follows: If $A[\tau]$ is a locally convex *-algebra, a directed family $\Gamma = \{p_{\lambda}\}_{\lambda \in \Lambda}$ of seminorms determining the topology τ is said to be C^*-like if for any $\lambda \in \Lambda$ there exists $\lambda' \in \Lambda$ such that $p_p(x y) \leq p_{\lambda'}(x) p_{\lambda'}(y)$, $p_{\lambda}(x^*) \leq p_{\lambda'}(x)$ and $p_{\lambda}(x)^2 \leq p_{\lambda'}(x^* x)$ for any $x, y \in A$. Of course, p_p are not necessarily C^*-seminorms; nevertheless, an unbounded C^*-norm p_{Γ} of A is defined by them in the following way:

$$D(p_{\Gamma}) = \{x \in A : \sup_{\lambda \in \Lambda} p_{\lambda}(x) < \infty\} \text{ with } p_{\Gamma}(x) := \sup_{\lambda \in \Lambda} p_{\lambda}(x), x \in D(p_{\Gamma}).$$

A locally convex *-algebra $A[\tau]$ is said to be C^*-like if it is complete and there is a C^*-like family $\Gamma = \{p_{\lambda}\}_{\lambda \in \Lambda}$ of seminorms determining the topology τ such that $D(p_{\Gamma})$ is τ''-dense in $A[\tau]$. In 1967, G.R. Allan [3] introduced and studied a class of locally convex *-algebras called GB*-algebras. In 1970, P.G. Dixon [16] modified Allan’s definition in the class of topological *-algebras, so that this wider class of GB*-algebras includes certain non-locally convex *-algebras. The notion of a GB*-algebra is a generalization of a C^*-algebra. Given a locally convex *-algebra $A[\tau]$ with identity 1, denote by B^* the collection of all closed, bounded, absolutely convex subsets B of A satisfying $1 \in B$, $B^* = B$ and $B^2 \subset B$. For every $B \in B^*$, the linear span of B forms a normed *-algebra under the Minkowski functional $\| \cdot \|_B$ of B, and it is denoted by $\text{Alg} B$ (simply, $A[\Gamma]$). If $A[B]$ is complete for every $B \in B^*$, then $A[\tau]$ is said to be pseudocomplete. If $A[\tau]$ is sequentially complete, then it is pseudocomplete. Let $A[\tau]$ be a pseudo-complete locally convex *-algebra. If B^* has the greatest member B_0 and $(1 + x^* x)^{-1} \in A[B_0]$ for every $x \in A$, then $A[\tau]$ is said to be a GB*-algebra over B_0. If $A[\tau]$ is a GB*-algebra over B_0, then $A[B_0]$ is a C^*-algebra and $\| \cdot \|_{B_0}$ is an unbounded C^*-norm of $A[\tau]$. Thus, the study of unbounded C^*-seminorms may be useful for investigations on locally convex *-algebras of this type. Let $A[\tau]$ be a locally convex *-algebra and p an unbounded C^*-norm of $A[\tau]$. Then,

$$D(p) \subset A[\tau] \subset \bar{A}[\tau] \quad \text{and} \quad D(p) \subset A[p] \equiv \hat{D}(p)[p] \quad \text{(C^*-algebra)}$$

where $\bar{A}[\tau]$ and $A[p]$ denote the completions of $A[\tau]$ and $D(p)[p]$, respectively. But, we have no relation of $\bar{A}[\tau]$ with the C^*-algebra $A[p]$, in general.

Suppose now that the following condition (N_1) holds:

(N_1) The topology defined by p is stronger than the topology τ on $D(p)$ (simply, $\tau \prec p$).
Then the identity map \(i : D(p) \to A[\tau] \) is continuous, therefore it can be extended to a continuous linear map \(\tilde{i} \) of \(A_p \) into \(\tilde{A}[\tau] \), where \(\tilde{i} \) is not necessarily an injection. It is easily shown that \(\tilde{i} \) is an injection iff the following condition \((N_2)\) is satisfied:

\((N_2)\) \(\tau \) and \(p \) are compatible in the sense that, for any Cauchy net \(\{x_a\} \) in \(D(p)[p] \) such that \(x_a \xrightarrow{\tau} 0 \), then \(x_a \xrightarrow{p} 0 \).

In this case we say that \(A_p \) is imbedded in \(\tilde{A}[\tau] \) and we write \(\tilde{A}[p] = \tilde{A}[\tau] \). Moreover, we have

\[D(p) \subset A[\tau] \hookrightarrow \tilde{A}[\tau] \text{ resp. } D(p) \subset A_p \hookrightarrow \tilde{A}[\tau]. \]

An unbounded \(C^*\)-norm \(p \) is said to be normal, if it satisfies the conditions \((N_1)\) and \((N_2)\).

The unbounded \(C^\ast\)-norms \(p_\tau \) and \(\| \cdot \|_{B_0} \) considered above are normal.

In this paper we shall investigate the structure and the representation theory of locally convex \(*\)-algebras with normal unbounded \(C^\ast\)-norms. As stated above, it is sufficient to investigate the completion \(\tilde{A}_0[\tau] \) of the \(C^\ast\)-algebra \(A_0[\| \cdot \|] \) with respect to a locally convex topology \(\tau \) on \(A_0 \) such that \(\tau < \| \cdot \| \). Then the following cases arise:

Case 1: If the multiplication in \(A_0 \) is jointly continuous with respect to the topology \(\tau \), then \(\tilde{A}_0[\tau] \) is a complete locally convex \(*\)-algebra containing the \(C^\ast\)-algebra \(A_0[\| \cdot \|] \) as dense subalgebra.

Case 2: If the multiplication on \(A_0 \) is not jointly continuous with respect to \(\tau \), then \(\tilde{A}_0[\tau] \) is not necessarily a locally convex \(*\)-algebra, but it has the structure of a partial \(*\)-algebra [4].

Under this stimulus, we investigate in the sequel, the structure and the representation theory of \(\tilde{A}_0[\tau] \).

2. Case 1

In this Section we study the structure and the representation theory of \(\tilde{A}_0[\tau] \) as described in Case 1 before.

Suppose that \(A_0[\| \cdot \|_0] \) is a \(C^\ast\)-algebra with identity 1, \(\tau \) a locally convex topology on \(A_0 \) such that \(\tau < \| \cdot \|_0 \) and \(A_0[\tau] \) a locally convex \(*\)-algebra with jointly continuous multiplication (take, for instance, the \(C^\ast\)-algebra \(C[0,1] \) of all continuous functions on \([0,1] \), with the topology \(\tau \) of uniform convergence on the countable compact subsets of \([0,1])\). As shown in Example 4.1, the \(C^\ast\)-algebra \(A_0[\| \cdot \|_0] \) that determines the locally convex \(*\)-algebra \(\tilde{A}_0[\tau] \) is not unique. For this reason, we denote by \(C^*(A_0, \tau) \) the set of all \(C^\ast\)-algebras \(A[\| \cdot \|] \) such that \(A_0 \subset A \subset \tilde{A}_0[\tau], \tau < \| \cdot \| \) and \(\| x \| = \| x \|_0, \forall x \in A_0 \). Then, \(C^*(A_0, \tau) \) is an ordered set with the order:

\[A_1[\| \cdot \|_1] \preceq A_2[\| \cdot \|_2] \text{ iff } A_1 \subset A_2 \text{ and } \| x \|_1 = \| x \|_2, \forall x \in A_1. \]
But, we do not know whether there exists a maximal C*-algebra in C*(A₀, τ).

Lemma 2.1. We denote by Bₜ the τ-closure of the unit ball \(U(A₀) \equiv \{ x \in A₀ : \| x \| ≤ 1 \} \) of the C*-algebra \(A₀ \| \| \cdot \| \| \). Then, \(Bₜ \) is a Banach *-algebra with the norm \(\| \cdot \|_{Bₜ} \) satisfying the following conditions:

(i) \((1 + x^* x)^{-1}, x(1 + x^* x)^{-1} \) and \((1 + x^* x)^{-1} x \) exist for every \(x \in A₀ \).

(ii) \(A₀ \subseteq A[Bₜ] \) and \(\| x \|_0 = \| x \|_{Bₜ} \) for each \(x \in A₀ \). Hence, \(U(A₀) = Bₜ ∩ A₀ \) and \(A₀ \) is a closed *-subalgebra of the Banach *-algebra \(A[Bₜ] \).

(iii) \(A[Bₜ] \) is \(\| \cdot \|_{Bₜ} \)-dense in \(A[B] \) for each \(B \in B^* \) containing \(U(A₀) \).

Proof. It is clear that \(Bₜ \) is a Banach *-algebra since \(A₀ \) is complete.

(i) Take an arbitrary \(x \in A₀[τ] \) and \(\{ xₐ \} \) a net in \(A₀ \) such that \(τ\text{-lim } xₐ = x \). Then, since \(A₀ \) is a C*-algebra, it follows first that \((1 + xₐ^* xₐ)^{-1} \in U(A₀) \), for every \(a \) and secondly that for any \(τ \)-continuous seminorm \(p \)

\[
p((1 + xₐ^* xₐ)^{-1} - (1 + xₐ^* xₐ)^{-1}) = p((1 + xₐ^* xₐ)^{-1} (xₐ^* xₐ - xₐ^* xₐ) (1 + xₐ^* xₐ)^{-1}) \leq q((1 + xₐ^* xₐ)^{-1}) q((1 + xₐ^* xₐ)^{-1}) q(xₐ^* xₐ - xₐ^* xₐ) \leq γ(1 + xₐ^* xₐ)^{-1} \quad \text{for some } γ > 0 \text{ and some } τ \text{-continuous seminorm } q.
\]

Thus \(\{ (1 + xₐ^* xₐ)^{-1} \} \) is a Cauchy net in \(A₀[τ] \) and \(y ≡ \lim A₀[τ] \) exists in \(A₀[τ] \). Since,

\[
I = (1 + xₐ^* xₐ)(1 + xₐ^* xₐ)^{-1} = (1 + xₐ^* xₐ)^{-1} (1 + xₐ^* xₐ), \quad \forall a,
\]

it follows that \((1 + x^* x)^{-1} \in A₀[τ] \) and \(y = (1 + x^* x)^{-1} \). Also, \((1 + x^* x)^{-1} \in Bₜ \) and in a similar way we have that

\[
x(1 + x^* x)^{-1} \text{ and } (1 + x^* x)^{-1} x \text{ belong to } Bₜ.
\]

(ii) Since \(U(A₀) \subseteq Bₜ \), it follows that \(A₀ ⊂ A[Bₜ] \) and \(\| x \|_{Bₜ} ≤ \| x \|_0 \) for each \(x \in A₀ \). From the theory of C*-algebras (see, for example, [32], Proposition 1.5.3), we have \(\| x \|_0 ≤ \| x \|_{Bₜ} \) for each \(x \in A₀ \). Hence, it follows that \(\| x \|_0 = \| x \|_{Bₜ} \) for each \(x \in A₀ \), which implies that \(U(A₀) = Bₜ ∩ A₀ \) and \(A₀ \) is a closed *-subalgebra of \(A[Bₜ] \).

(iii) Take an arbitrary \(B \in B^* \) containing \(U(A₀) \). Since \(B \) is τ-closed, it follows that \(Bₜ \subseteq B \), and so \(A[Bₜ] \subseteq A[B] \) and \(\| x \|_{Bₜ} ≤ \| x \|_{B} \) for each \(x \in A[Bₜ] \). Let \(x \in A[B] \). By (i) we have

\[
x \left(I + \frac{1}{n} x^* x \right)^{-1} \in A[Bₜ], \quad ∀ n \in \mathbb{N} \text{ and }\]
Do not hallucinate.

By Lemma 2.1, (i) $A[\mathcal{B}_1]$ is a symmetric Banach $*$-algebra, therefore by Pták’s theory for hermitian algebras [28] (see, e.g., [20], Corollary 3.4, Theorem 3.2) $A[\mathcal{B}_1]$ is hermitian and the Pták function defined as $p_{A[\mathcal{B}_1]}(x) := r_{A[\mathcal{B}_1]}(x^*x)^{1/2}$, $x \in A[\mathcal{B}_1]$, where $r_{A[\mathcal{B}_1]}$ is the spectral radius, is a C^*-seminorm satisfying $p_{A[\mathcal{B}_1]}(x) \leq \|x\|_{\mathcal{B}_1}$ for each $x \in A[\mathcal{B}_1]$ and $p_{A[\mathcal{B}_1]}(x) \leq \|x\|_0$, for each $x \in A_0$. It is natural to consider the following question:

Question A. Is $\mathcal{A}_0[\tau]$ a GB^*-algebra? When is $\mathcal{A}_0[\tau]$ a GB^*-algebra?

An answer is provided by the following theorem.

Theorem 2.2. The following statements are equivalent:

(i) $\mathcal{A}_0[\tau]$ is a GB^*-algebra.

(ii) There exists the greatest member B_0 in B^*.

(iii) There exists a member B_0 in B^* containing $U(A_0)$ such that $\|\cdot\|_{B_0}$ is a C^*-norm.

If (iii) is true, then B_0 in (iii) is the greatest member in B^* and $\mathcal{A}_0[\tau]$ is a GB^*-algebra over B_0.

Proof. (i) \Rightarrow (iii) Since $\mathcal{A}_0[\tau]$ is a GB^*-algebra, there exists the greatest member B_0 in B^*. Then $\|\cdot\|_{B_0}$ is a C^*-norm and $U(A_0) \subset B_0$, since $B_0 \subset B^*$.

(iii) \Rightarrow (ii) Let $B_0 \in B^*$ such that $\|\cdot\|_{B_0}$ is a C^*-norm and $U(A_0) \subset B_0$. Take an arbitrary $B \in B^*$ and $h^* = h \in B$. Let C be a maximal, commutative, locally convex $*$-algebra containing h. Then C is a complete commutative locally convex $*$-algebra. We denote by B^C_0 the collection of all closed, bounded, absolutely convex subsets B_1 of C satisfying: $1 \in B_1$, $B_1^* = B_1$ and $B_1^2 \subset B_1$. Then, $B^C_0 = \{B_2 \cap C; B_2 \subset B^*\}$. We show that $B \subset C \subset B_0 \cap C$. Since C is commutative and complete, it follows from ([3], Theorem 2.10) that B^C_0 is directed, so that there exists $B_1 \in B^C_0$ such that $(B \cap C) \cup (B_0 \cap C) \subset B_1$. Then, since the C^*-algebra

\[
\lim_{n \to \infty} \left\| x \left(I + \frac{1}{n} x^* x \right)^{-1} - x \right\|_{B_0} = \lim_{n \to \infty} \frac{1}{n} \left\| x x^* \left(I + \frac{1}{n} x^* x \right)^{-1} \right\|_{B_0} \\
\leq \lim_{n \to \infty} \frac{1}{n} \left\| x x^* \right\|_{B_0} \left\| \left(I + \frac{1}{n} x^* x \right)^{-1} \right\|_{B_0} \\
\leq \lim_{n \to \infty} \frac{1}{n} \left\| x x^* \right\|_{B_0} = 0.
\]

Hence, $A[\mathcal{B}_1]$ is $\|\cdot\|_{B_0}$-dense in $A[\mathcal{B}_1]$. This completes the proof.

*Added in proof. While this paper was under publication, question A was proved in full and the answer can be found in [21, Theorem 2.1].
A[B₀ ∩ C] = A[B₀] ∩ C is contained in the Banach ∗-algebra A[B₁], it follows from ([32], Proposition I.5.3) that

\[\|x\|_{B₀} = \|x\|_{B₀ ∩ C} \leq \|x\|_{B₁}, \quad \forall x \in A[B₀] ∩ C. \]

On the other hand, since B₀ ∩ C ⊂ B₁, it follows that

\[\|x\|_{B₁} \leq \|x\|_{B₀ ∩ C} = \|x\|_{B₀}, \quad \forall x \in A[B₀] ∩ C. \]

Thus, we have

\[(2.1) \quad \|x\|_{B₁} = \|x\|_{B₀}, \quad \forall x \in A[B₀] ∩ C \]

and the C∗-algebra A[B₀] ∩ C is ∥ · ∥_{B₁}-dense in the Banach ∗-algebra A[B₁]. Indeed, from Lemma 2.1, (i)

\[x(1 + \frac{1}{n} x^* x)^{-1} \in A[B₁], \quad \forall x \in A[B₁] \quad \text{and} \quad \forall n \in \mathbb{N}. \]

It is easily shown that \(\{x, (1 + y^* y)^{-1} : x, y \in C\} \) is commutative, so that by the maximality of C, \(\{ (1 + y^* y)^{-1} : y \in C \} \subset C \). Furthermore, it follows from the assumption \(\mathcal{U}(A₀) \subset B₀ \), that \(A[B₁] ∩ C \subset A[B₀] ∩ C \). Hence,

\[x \left(1 + \frac{1}{n} x^* x \right)^{-1} \in A[B₁] ∩ C \subset A[B₀] ∩ C. \]

In a similar way, as in the proof of Lemma 2.1, (iii) we can show that

\[\|x\left(1 + \frac{1}{n} x^* x\right)^{-1} - x\|_{B₁} \leq \frac{1}{n} \|xx^* x\|_{B₁}. \]

Hence, \(A[B₀] ∩ C \) is ∥ · ∥_{B₁}-dense in \(A[B₁] \). By (2.1) \(A[B₀] ∩ C = A[C ∩ B₀] = A[B₁] \), and so \(B₀ ∩ C = B₁ \). Thus, \(B ∩ C ⊂ B₀ ∩ C \). Therefore, \(h \in B₀ \) and if \(B₀ = \{x \in B : x^* = x\} \), we have \(B₀ \subset (B₀)_h \), which implies that \(\|x\|_{B₀}^2 = \|x^* x\|_{B₀} \leq 1 \) for each \(x \in B \). Hence, \(B ⊂ B₀ \) and \(B₀ \) is the greatest member in \(B^* \).

(ii) \(\Rightarrow \) (i) This follows from Lemma 2.1, (i) and so the proof is complete.

By Theorem 2.2 we have the next

Corollary 2.3. Consider the following statements:

(i) \(\overline{A₀[τ]} \) is a GB∗-algebra over \(\mathcal{U}(A₀) \).

(ii) \(\mathcal{U}(A₀) \) is τ-closed.

(iii) \(A₀[τ] \) is a GB∗-algebra over \(B₁ \).

(iv) \(B₁ \) is the greatest member in \(B^* \).

(v) ∥ · ∥_{B₁} is a C∗-norm.

Then, the following implications hold: (i) \(⇔ \) (ii) \(⇔ \) (iii) \(⇔ \) (iv) \(⇔ \) (v).

We investigate now the representation theory of \(\overline{A₀[τ]} \). We begin with some basic terminology. For more details see [23, 30]. Let \(D \) be a dense subspace of a
Hilbert space \mathcal{H}. Denote by $\mathcal{L}(\mathcal{D})$ all linear operators from \mathcal{D} into \mathcal{D} and let

$$\mathcal{L}^1(\mathcal{D}) := \{ X \in \mathcal{L}(\mathcal{D}) : \mathcal{D}(X^*) \supset \mathcal{D} \text{ and } X^*\mathcal{D} \subset \mathcal{D} \}.$$

$\mathcal{L}^1(\mathcal{D})$ is a $*$-algebra, under the usual algebraic operations and the involution $X \to X^* := X^* \dagger \mathcal{D}$. Furthermore, $\mathcal{L}^1(\mathcal{D})$ is a locally convex $*$-algebra equipped with the topology $\tau_{\mathcal{H}}$ (resp. $\tau_{\mathcal{D}}$) defined by the family $\{ p_{\mathcal{H}}(\cdot) : \xi, \eta \in \mathcal{D} \}$ of seminorms with $p_{\mathcal{H}}(X) := \| \langle X\xi, \eta \rangle \|, X \in \mathcal{L}^1(\mathcal{D})$ (resp. the family $\{ p_{\mathcal{D}}(\cdot) : \xi \in \mathcal{D} \}$ of seminorms with $p_{\mathcal{D}}(X) := \| X\xi \| + \| X^*\xi \|, X \in \mathcal{L}^1(\mathcal{D})$). A $*$-subalgebra of $\mathcal{L}^1(\mathcal{D})$ is said to be an O^*-algebra on \mathcal{D}. Let \mathcal{A} be a $*$-algebra. A $*$-homomorphism $\pi : \mathcal{A} \to \mathcal{L}^1(\mathcal{D})$ is called (unbounded) $*$-representation of \mathcal{A} on the Hilbert space \mathcal{H}_τ. with domain \mathcal{D}. If \mathcal{A} has an identity, say I, we suppose that $\pi(I) = I$, with I the identity operator in $\mathcal{L}^1(\mathcal{D})$. From now on, we shall use the notation: $\mathcal{D}(\pi)$ for the domain of π and \mathcal{H}_τ for the corresponding Hilbert space. A $*$-representation π of \mathcal{A} is said to be faithful if $\pi(a) = 0, a \in \mathcal{A}$, implies $a = 0$. A $*$-representation π of a locally convex $*$-algebra $\mathcal{A}[\tau]$ is said to be τ-continuous (resp. τ-τ-)continuous) if it is continuous from $\mathcal{A}[\tau]$ to $\pi(\mathcal{A})[\tau_{\mathcal{H}}]$ (resp. to $\pi(\mathcal{A})[\tau_{\mathcal{D}}]$).

We define now a wedge $\mathcal{A}_0[\tau]$ of $\mathcal{A}_0[\tau]$. Take an arbitrary C^*-algebra $\mathcal{A}[\mathbb{C}]_0[\tau]$. Then, we have $\mathcal{A}_+^{\tau} = (\mathcal{A}_0)_0^{\tau}$, where \mathcal{A}_+ and $(\mathcal{A}_0)_+$ are positive cones in the C^*-algebras \mathcal{A} and \mathcal{A}_0 respectively. Indeed, take an arbitrary $a \in \mathcal{A}_+$. Then, there is a net $\{ x_\alpha \}$ in \mathcal{A}_0 such that $\tau - \lim_{\alpha} x_\alpha = a^{1/2}$. Hence, $\{ x_\alpha^* x_\alpha \} \subset (\mathcal{A}_0)_+$ and $\tau - \lim_{\alpha} x_\alpha^* x_\alpha = a$. This implies that $\mathcal{A}_+^{\tau} \subset (\mathcal{A}_0)_0^{\tau}$. The converse is clear. Thus, the τ-closure $\mathcal{A}_0[\tau]^{\tau}$ of $(\mathcal{A}_0)_+$ is independent of the method of taking C^*-algebras in $C^*(\mathcal{A}_0, \tau)$, therefore in the sequel we shall denote by $\mathcal{H}_0[\tau]$ the τ-closure of $(\mathcal{A}_0)_+$. So, $\mathcal{A}_0[\tau]^{\tau}$ is a wedge (in the sense that if $x, y \in \mathcal{A}_0[\tau]^{\tau}$ and $\lambda \geq 0$, then $x + y, \lambda x \in \mathcal{A}_0[\tau]^{\tau}$, and $\mathcal{A}_0[\tau]^{\tau} = P(\mathcal{A}_0[\tau])^{\tau}$ (the τ-closure of the algebraic wedge $P(\mathcal{A}_0[\tau]) = \{ \sum_{k=1}^n x_k^* x_k : x_k \in \mathcal{A}_0[\tau] (k = 1, \ldots, n), n \in \mathbb{N} \}$).

A linear functional f on $\mathcal{A}_0[\tau]$ is said to be strongly positive (resp. positive) if $f(x) \geq 0$ for each $x \in \mathcal{A}_0[\tau]$, (resp. $x \in P(\mathcal{A}_0[\tau])$).

Theorem 2.4. The following statements are equivalent:

(i) $\mathcal{A}_0[\tau] \cap (-\mathcal{A}_0[\tau]) = \{ 0 \}$.

(ii) $A[\mathcal{B}][\tau] \cap (-A[\mathcal{B}][\tau]) = \{ 0 \}$.

(iii) The Pták function $P_A[\mathcal{B}]$ on the Banach $*$-algebra $A[\mathcal{B}, \tau]$ is a C^*-norm (see comments before question A).

(iv) There exists a faithful $*$-representation of $\mathcal{A}_0[\tau]$.

(v) There exists a faithful $(\tau - \tau)$-continuous $*$-representation of $\mathcal{A}_0[\tau]$.

Proof: (i) \Rightarrow (v) Let F be the set of all τ-continuous strongly positive linear functionals on $\mathcal{A}_0[\tau]$. Let $\langle \pi_f, \lambda_f, \mathcal{H}_f \rangle$ be the GNS-construction for $f \in F$. We
We show that π is a $(\tau - \tau_s, \ast)$-continuous \ast-representation of $\tilde{A}_0[\tau]$. Then, it is easily shown that π is faithful. In fact, suppose $0 \neq a \in \tilde{A}_0[\tau]_h$ (the hermitian part of $\tilde{A}_0[\tau]$). Let $a \in \tilde{A}_0[\tau]_+$. Since $\tilde{A}_0[\tau]_+ \cap (-\tilde{A}_0[\tau]_+) = \{0\}$, we have $\tilde{A}_0[\tau]_+ \cap \{-a\} = \phi$. Hence, it follows from ([15], Chapter II, §5, Proposition 4) that there exists a τ-continuous strongly positive linear functional f on $\tilde{A}_0[\tau]$ such that $f(a) > 0$. Let $a \notin \tilde{A}_0[\tau]_+$. Since $\tilde{A}_0[\tau]_+ \cap \{a\} = \phi$, we can show in a similar way that there exists a τ-continuous strongly positive linear functional f on $\tilde{A}_0[\tau]$ such that $f(a) < 0$. Since $(\pi_f(a)\lambda_f(1)\lambda_f(1)) = f(a) \neq 0$ this implies that $\pi_f(a) \neq 0$, and so $\pi(a) \neq 0$. Similarly, for any $0 \neq a \in \tilde{A}_0[\tau]$ we have $\pi(a) \neq 0$ by considering $a = a_1 + ia_2$ ($a_1, a_2 \in \tilde{A}_0[\tau]_h$).

(v) \Rightarrow (iv) This is trivial.

(iv) \Rightarrow (iii) Let π be a faithful \ast-representation of $\tilde{A}_0[\tau]$. Since $A[B_\tau]$ is a symmetric Banach \ast-algebra by Lemma 2.1, (i), it follows from ([20], Theorem 3.2, Corollary 3.4) that the Pták function $p_{A[B_\tau]}$ is a C^*-seminorm. In particular (Raikov criterion for symmetry),

$$p_{A[B_\tau]}(x) = \sup_{\rho \in \text{Rep}(A[B_\tau])} \|\rho(x)\|, \quad x \in A[B_\tau],$$

where $\text{Rep}(A[B_\tau])$ denotes the set of all \ast-representations of $A[B_\tau]$. Suppose $p_{A[B_\tau]}(x) = 0$. Since $\pi \upharpoonright A[B_\tau] \in \text{Rep}(A[B_\tau])$, we have $\pi(x) = 0$, and so $x = 0$. Thus $p_{A[B_\tau]}$ is a C^*-norm.

(iii) \Rightarrow (ii) We first show that

$$\text{Sp}_{A[B_\tau]}(x) \subset \mathbb{R}_+ \equiv \{\lambda \in \mathbb{R} : \lambda \geq 0\}, \quad \forall x \in A[B_\tau]_+, \quad (2.2)$$

where $\text{Sp}_{A[B_\tau]}(x)$ stands for the spectrum of $x \in A[B_\tau]$. In fact, take an arbitrary $x \in A[B_\tau]_+$ and a net $\{x_\alpha\}$ in $(A_0)_+$ that converges to x with respect to τ. Since $A[B_\tau]$ is hermitian ([20], Corollary 3.4), it follows that $\text{Sp}_{A[B_\tau]}(x) \subset \mathbb{R}$. Let $\lambda < 0$. Notice that $\lambda(\lambda I - x_\alpha)^{-1} \in U(A_0)$, for every α. Then for any τ-continuous
seminorm p on $\tilde{A}_0[\tau]$

\[
p(\lambda(\lambda I - x_a)^{-1} - \lambda(\lambda I - x_\bar{b})^{-1})
= |\lambda|p((\lambda I - x_a)^{-1}(x_a - x_\bar{b})((\lambda I - x_\bar{b})^{-1})
\leq |\lambda|q((\lambda I - x_a)^{-1})q(x_a - x_\bar{b})q((\lambda I - x_\bar{b})^{-1})
\leq \frac{1}{|\lambda|}q(x_a - x_\bar{b})
\leq \frac{\gamma}{|\lambda|}q(x_a - x_\bar{b})
\]

for some constant $\gamma > 0$ and a τ-continuous seminorm q on $\tilde{A}_0[\tau]$. It follows that

$\lambda(\lambda I - x_a)^{-1}$ converges to an element y of B_τ with respect to τ, which implies that $\lambda(\lambda I - x)^{-1}$ exists and equals y. Hence, $\lambda \notin SP_{A[B_\tau]}(x)$. Thus, we have $SP_{A[B_\tau]}(x) \subset \mathbb{R}^+$. Take an arbitrary $x \in A[B_\tau]^+ \cap (-A[B_\tau]^+)$. Then, from (2.2), it follows that $SP_{A[B_\tau]}(x) = \{0\}$, therefore $p_{A[B_\tau]}(x) = r_{A[B_\tau]}(x) = 0$. Since $p_{A[B_\tau]}$ is a norm, we have $x = 0$.

(ii) \Rightarrow (i) Take an arbitrary $a \in \tilde{A}_0[\tau]^+ \cap (-\tilde{A}_0[\tau]^+)$. Then, from Lemma 2.1, (i) it follows that $a(1 + a^2)^{-1} \in A[B_\tau]^+ \cap (-A[B_\tau]^+) = \{0\}$, which implies $a = 0$. This completes the proof.

In the case of C^*-algebras (resp. pro-C^*-algebras), the condition (ii) of Theorem 2.4, is always true. Also see Example 4.4 in Section 4. In the case of symmetric Banach $*$-algebras (resp. symmetric topological $*$-algebras), which in fact can be viewed as a generalization of C^*-algebras [28] (resp. pro-C^*-algebras), it seems that such a property has not been investigated. Some information about the set A_+, with A a certain involutive algebra can be found in [14, 29].

Question B. (1) Is $P(\tilde{A}_0[\tau])$ τ-closed? That is, does the equality $\tilde{A}_0[\tau]^+ = P(\tilde{A}_0[\tau])$ hold? Equivalently, for each net $\{x_a\}$ in $(\tilde{A}_0)^+$ which converges to $x \in \tilde{A}_0[\tau]^+$, is $\{x_a^{1/2}\}$ τ-Cauchy?
(2) Does one of the conditions in Theorem 2.4 always hold?

If $\tilde{A}_0[\tau]$ is a GB^*-algebra, then the above questions (1) and (2) have positive answers. Does the converse hold? That is, the following question arises.

Question C. If the answer to Question B is affirmative, is then $\tilde{A}_0[\tau]$ a GB^*-algebra?
To consider question C, we define an unbounded C^*-seminorm r_π of $\tilde{A}_0[\tau]$ induced by a $*$-representation π of $\tilde{A}_0[\tau]$ as follows:

$$D(r_\pi) = \tilde{A}_0[\tau]_B^\pi := \{x \in \tilde{A}_0[\tau] : \pi(x) \in B(H_\pi)\},$$

$$r_\pi(x) = \|\pi(x)\|, \quad x \in D(r_\pi).$$

Then we have the next

Lemma 2.5. Let π be a faithful $*$-representation of $\tilde{A}_0[\tau]$ and B any element of B^* containing $U(A_0)$. Then the following statements hold:

1. $A_0 \subset A[B] \subset A[B] \subset D(r_\pi) = \tilde{A}_0[\tau]_B^\pi$ and $\|\pi(x)\| \leq \|x\|_B$, $\forall x \in A[B]$. as well as $\|\pi(x)\| = \|x\|_B$, $\forall x \in A_0$.
2. $\pi(A[B])$ is τ_π-dense in $\pi(\tilde{A}_0[\tau])$, and it is also uniformly dense in $\pi(\tilde{A}_0[\tau]_B^\pi)$.
3. Suppose π is $(\tau - \tau_\omega)$-continuous. Then $\pi(\tilde{A}_0[\tau]_+^\pi) \subset L^1(D(\pi)_+)$.

Proof. (1) is easily shown.

(2) Take an arbitrary $a \in \tilde{A}_0[\tau]$. Then it follows that

$$(1 + \epsilon a^* a)^{-1} a = \frac{1}{\sqrt{\epsilon}} (1 + (\sqrt{\epsilon} a)^* (\sqrt{\epsilon} a))^{-1} (\sqrt{\epsilon} a) \in A[B], \quad \forall \epsilon > 0$$

and for each $\xi \in D(\pi)$

$$\|\pi((1 + \epsilon a^* a)^{-1} a)\xi - \pi(a)\xi\| = \epsilon \|\pi((1 + \epsilon a^* a)^{-1})\pi(a^* a^2)\xi\|
\leq \epsilon \|\pi((1 + \epsilon a^* a)^{-1})\| \|\pi(a^* a^2)\xi\|
\leq \epsilon \|1 + \epsilon a^* a\| B_\pi \|\pi(a^* a^2)\xi\|
\leq \epsilon \|\pi(a^* a^2)\xi\| \xrightarrow{\epsilon \downarrow 0} 0,$$

so that $\pi(A[B])$ is τ_π-dense in $\pi(\tilde{A}_0[\tau])$. Take an arbitrary $a \in \tilde{A}_0[\tau]_B^\pi$. Then since

$$\|\pi((1 + \epsilon a^* a)^{-1} a)\xi - \pi(a)\xi\| \leq \epsilon \|\pi(a^* a^2)\| \|\xi\|$$

for each $\xi \in D(\pi)$, it follows that $\lim_{\epsilon \downarrow 0} \pi((1 + \epsilon a^* a)^{-1} a) = \pi(a)$ uniformly, which implies that $\pi(A[B])$ is uniformly dense in $\pi(\tilde{A}_0[\tau]_B^\pi)$. Since $A[B] \subset A[B]$, (2) follows.

(3) This follows from $(\tau - \tau_\omega)$-continuity of π and $\pi((A_0)_+^\pi) \subset L^1(D(\pi)_+)$. This completes the proof.
We simply sketch how Lemma 2.5 looks:

\[\pi : \tilde{A}_0[\tau] \rightarrow \pi(\tilde{A}_0[\tau]) \]

\[\cup \quad \tau_\tau\text{-dense} \]

\[\tilde{A}_0[\tau]^\#_B \rightarrow \pi(\tilde{A}_0[\tau]^\#_B) \]

\[\cup \quad \text{uniformly dense} \]

\[A[B_\tau] \rightarrow \pi(A[B_\tau]) \]

symmetric Banach *-algebra

\[\cup \]

\[A_0[\|\cdot\|] \rightarrow \pi(A_0) \]

C*-algebra C*-algebra on \(H_\pi \).

The following theorem gives an answer to question C.

THEOREM 2.6. The following statements are equivalent:

(i) \(\tilde{A}_0[\tau] \) is a GB*-algebra.

(ii) There exists a faithful \((\tau - \tau_\star\tau^*)\)-continuous *-representation \(\pi \) of \(\tilde{A}_0[\tau] \), such that \(\tau < r_\pi \).

Proof. (i) \(\Rightarrow \) (ii) Suppose \(\tilde{A}_0[\tau] \) is a GB*-algebra over \(B_0 \). Since \(A[B_\tau]_+ \cap (-A[B_\tau])_+ \subset A[B_0]_+ \cap (-A[B_0])_+ = \{0\} \), Theorm 2.4 implies the existence of a faithful \((\tau - \tau_\star\tau^*)\)-continuous *-representation of \(\tilde{A}_0[\tau] \). Furthermore, since \(\pi(A[B_0]) \) is a C*-algebra, Lemma 2.5, (2) yields that

\[\pi(A[B_0]) = \pi(\tilde{A}_0[\tau]^\#_B) \text{ and } r_\pi(x) = \|\pi(x)\| = \|x\|_{B_0}, \quad \forall x \in D(r_\pi), \]

which implies \(\tau < r_\pi \).

(ii) \(\Rightarrow \) (i) Since \(\tau < r_\pi \) and \(\pi \) is \((\tau - \tau_\star\tau^*)\)-continuous, it follows that \(\tau \) and \(r_\pi \) are compatible, whence one gets that the completion \(A_{r_\pi} \) of \(D(r_\pi) \) is embedded in \(\tilde{A}_0[\tau] \). We denote by \(B_0 \) the \(\tau \)-closure of the unit ball \(U(A_{r_\pi}) \) of the C*-algebra \(A_{r_\pi} \). Then, \(B_0 \in B^* \) and from Lemma 2.5, (1) we get

\[B \subset U(\tilde{A}_0[\tau]^\#_B) \subset B_0, \quad \forall B \in B^*, \]

which implies that \(B_0 = U(\tilde{A}_0[\tau]^\#_B), \) with \(B_0 \) the greatest member in \(B^* \). Thus, from Theorem 2.2, we conclude that \(\tilde{A}_0[\tau] \) is a GB*-algebra over \(U(\tilde{A}_0[\tau]^\#_B) \) and this completes the proof.

It is known that every *-representation \(\pi \) of a Fréchet *-algebra \(A[\tau] \) is \((\tau - \tau_\star\tau^*)\)-continuous. Indeed, take an arbitrary \(\xi \in D(\pi) \) and put \(f_\xi(x) := (\pi(x)\xi, x) \in A \). Then, \(f_\xi \) is a positive linear functional on the Fréchet *-algebra
\(\mathcal{A}[\tau]\), which is continuous by ([17], Theorem 4.3). Furthermore, since the multiplication of a Fréchet \(*\)-algebra is jointly continuous, it follows that \(\pi\) is \((\tau - \tau_{\pi})\)-continuous. From this fact, as well as Theorem 2.6, we conclude the following

Corollary 2.7. Let \(\mathcal{A}_0[\tau]\) be a Fréchet \(*\)-algebra. Then, the following are equivalent:

(i) \(\mathcal{A}_0[\tau]\) is a GB\(^*\)-algebra.

(ii) There exists a faithful \(*\)-representation \(\pi\) of \(\mathcal{A}_0[\tau]\) such that \(\tau \prec r_{\pi}\).

3. Case 2

In this section we shall investigate the structure and the representation theory of \(\mathcal{A}_0[\tau]\) as it appears in case 2 in the Introduction. First we recall some basic definitions and properties of partial \(*\)-algebras and quasi \(*\)-algebras (for more details, refer to [4]). A partial \(*\)-algebra is a vector space \(\mathcal{A}\), endowed with a vector space involution \(x \rightarrow x^*\) and a partial multiplication defined by a set \(\Gamma \subset \mathcal{A} \times \mathcal{A}\) (a binary relation) with the properties:

(i) \((x, y) \in \Gamma\) implies \((y^*, x^*) \in \Gamma\);

(ii) \((x, y_1), (x, y_2) \in \Gamma\) implies \((x, \lambda y_1 + \mu y_2) \in \Gamma\) for all \(\lambda, \mu \in \mathbb{C}\);

(iii) for any \((x, y) \in \Gamma\), a multiplication \(xy \in \mathcal{A}\), is defined on \(\mathcal{A}\), which is distributive with respect to addition and satisfies the relation \((xy)^* = y^*x^*\).

Whenever \((x, y) \in \Gamma\), we say that \(x\) is a left multiplier of \(y\) and \(y\) is a right multiplier of \(x\), and write \(x \in L(y)\) respectively \(y \in R(x)\).

Let \(\mathcal{A}\) be a vector space and let \(\mathcal{A}_0\) be a subspace of \(\mathcal{A}\), which is also a \(*\)-algebra. \(\mathcal{A}\) is said to be a **quasi \(*\)-algebra** with distinguished \(*\)-algebra \(\mathcal{A}_0\) (or, simply, over \(\mathcal{A}_0\)) if

(i) the left multiplication \(ax\) and the right multiplication \(xa\) of an element \(a\) of \(\mathcal{A}\) with an element \(x\) of \(\mathcal{A}_0\), that extend the multiplication of \(\mathcal{A}_0\), are always defined and are bilinear;

(ii) \(x_1(x_2a) = (x_1x_2)a, (ax_1)x_2 = a(x_1x_2)\) and \(x_1(ax_2) = (x_1a)x_2\), for any \(x_1, x_2 \in \mathcal{A}_0\) and \(a \in \mathcal{A}\);

(iii) an involution \(*\) that extends the involution of \(\mathcal{A}_0\) is defined in \(\mathcal{A}\) with the property \((ax)^* = x^*a^*\) and \((xa)^* = a^*x^*\) for each \(x \in \mathcal{A}_0\) and \(a \in \mathcal{A}\).

Let \(\mathcal{A}_0[\tau]\) be a locally convex \(*\)-algebra. Then the completion \(\mathcal{A}_0[\tau]\) of \(\mathcal{A}_0[\tau]\) is a quasi \(*\)-algebra over \(\mathcal{A}_0\) equipped with the following left and right multiplications:

\[ax := \lim_{a} x_n a \quad x a := \lim_{a} x x_n, \quad \forall x \in \mathcal{A}_0 \quad \text{and} \quad a \in \mathcal{A},\]

where \(\{x_n\}\) is a net in \(\mathcal{A}_0\) converging to \(a\) with respect to the topology \(\tau\). Furthermore, the left and right multiplications are separately continuous. A \(*\)-invariant subspace \(\mathcal{A}\) of \(\mathcal{A}_0[\tau]\) containing \(\mathcal{A}_0\) is said to be a **quasi-\(*\)-subalgebra** of \(\mathcal{A}_0[\tau]\) if
and \(xa \) belong to \(A \) for any \(x \in A_0 \) and \(a \in A \). Then, it is readily shown that \(A \) is a quasi \(*\)-algebra over \(A_0 \). Moreover, \(A[\tau] \) is a locally convex space containing \(A_0 \) as a dense subspace and the right and left multiplications are separately continuous. Such an algebra \(A \) is said to be a locally convex quasi \(*\)-algebra over \(A_0 \).

Concerning \(*\)-representations of partial \(*\)-algebras and quasi \(*\)-algebras, start with a dense subspace \(\mathcal{D} \) of a Hilbert space \(\mathcal{H} \) and denote by \(\mathcal{L}^1(\mathcal{D}, \mathcal{H}) \) the set of all linear operators \(X \) from \(\mathcal{D} \) to \(\mathcal{H} \) such that \(\mathcal{D}(X^*) \supset \mathcal{D} \). Then \(\mathcal{L}^1(\mathcal{D}, \mathcal{H}) \) is a partial \(*\)-algebra with respect to the usual sum, scalar multiplication and involution \(X^* = X^* \mid_\mathcal{D} \) and the (weak) partial multiplication \(X \circ Y = X^* Y \), defined whenever \(X \) is a left multiplier of \(Y \) \((X \in L(Y)) \), that is, \(Y \mathcal{D} \subset \mathcal{D}(X^*) \) and \(X^* \mathcal{D} \subset \mathcal{D}(Y^*) \). A (partial) \(*\)-subalgebra of the partial \(*\)-algebra \(\mathcal{L}^1(\mathcal{D}, \mathcal{H}) \) is said to be a partial \(O^*\)-algebra on \(\mathcal{D} \). A \(*\)-representation of a partial \(*\)-algebra \(A \) is a \(*\)-homomorphism \(\pi \) of \(A \) into a partial \(O^*\)-algebra \(\mathcal{L}^1(\mathcal{D}, \mathcal{H}) \), in the sense of ([4], Definition 2.1.6), satisfying \(\pi(1) = 1 \), whenever \(1 \in A \).

In this case too, the spaces \(\mathcal{D} \) and \(\mathcal{H} \) will be denoted by \(\mathcal{D}(\pi) \) and \(\mathcal{H}_\pi \) respectively. The algebraic conjugate dual \(\mathcal{D}^\dagger \) of \(\mathcal{D} \) (i.e., the set of all conjugate linear functionals on \(\mathcal{D} \)), becomes a vector space in a natural way. Denote by \(\mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger) \) the set of all linear maps from \(\mathcal{D} \) to \(\mathcal{D}^\dagger \). Then, \(\mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger) \) is a \(*\)-invariant vector space under the usual operations and the involution \(T \rightarrow T^* \) with \(< T^* \xi, \eta > := \overline{< T \eta, \xi >}, \xi, \eta \in \mathcal{D} \), where \(< T^* \xi, \eta > = T^* \xi(\eta) \). Any linear operator \(X \) defined on \(\mathcal{D} \) is regarded as an element of \(\mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger) \) such that \(X \xi, \eta := (X\xi)\eta, \xi, \eta \in \mathcal{D} \). For \(\mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger) \) we have the following

Lemma 3.1. (1) \(\mathcal{L}^\dagger(\mathcal{D}, \mathcal{H}) \) is regarded as a \(*\)-subalgebra of \(\mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger) \).

(2) For any \(X \in \mathcal{L}^1(\mathcal{D}) \) and \(T \in \mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger) \) we may define the multiplications
\[
< X \circ T \xi, \eta > := < T \xi, X^\dagger \eta > \quad \text{and} \quad < T \circ X \xi, \eta > := < TX \xi, \eta >;
\]
under these multiplications, \(\mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger) \) is a quasi \(*\)-algebra over \(\mathcal{L}^1(\mathcal{D}) \).

(3) The locally convex topology \(\tau_w \) on \(\mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger) \) is defined by the family
\[
\{ p_{\xi, \eta}(\cdot) : \xi, \eta \in \mathcal{D} \}
\]
of seminorms with \(p_{\xi, \eta}(T) := | < T \xi, \eta > |, \ T \in \mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger), \) and it is called weak topology. It is not difficult to show that
\[
\mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger) = \text{ the set of all sesquilinear forms on } \mathcal{D} \times \mathcal{D} = \mathcal{L}^\dagger(\mathcal{D})[\tau_w]
\]
and that \(\mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger)[\tau_w] \) is a locally convex quasi \(*\)-algebra over \(\mathcal{L}^1(\mathcal{D}) \). More generally, for any \(O^*\)-algebra \(\mathcal{M} \) on \(\mathcal{D} \), \(\mathcal{M}[\tau_w] \) is a locally convex quasi \(*\)-algebra over \(\mathcal{M} \).

A quasi \(*\)-representation of a quasi \(*\)-algebra \(A \) over \(A_0 \) is naturally defined as a linear map \(\pi \) of \(A \) into a quasi \(*\)-algebra \(\mathcal{L}(\mathcal{D}, \mathcal{D}^\dagger) \) over \(\mathcal{L}^1(\mathcal{D}) \) such that:

(i) \(\pi \) is a \(*\)-representation of the \(*\)-algebra \(A_0 \);
(ii) \(\pi(\alpha)^\dagger = \pi(\alpha^*), \ \forall \alpha \in A \);
(iii) \(\pi(ax) = \pi(a) \circ \pi(x) \) and \(\pi(xa) = \pi(x) \circ \pi(a) \), \(\forall a \in A, \forall x \in A_0 \).

It is easily shown that if \(\pi \) is a quasi \(*\)-representation of \(A \), then \(\pi(A) \) is a quasi \(*\)-algebra over \(\pi(A_0) \).

Lemma 3.2. Let \(\mathcal{A}[\tau] \) be a locally convex quasi \(*\)-algebra over \(A_0 \) and \(\pi \) a quasi \(*\)-representation of \(A \). Suppose \(\pi \) is \((\tau - \tau_w) \)-continuous. Then, \(\pi(A) \) is a locally convex quasi \(*\)-algebra over \(\pi(A_0) \).

Proof. From Lemma 3.1, (3) and the \((\tau - \tau_w) \)-continuity of \(\pi \) we have

\[
\begin{align*}
\pi(A_0) & \subset \pi(A) \subset \pi(\overline{A_0}[\tau_w]) \quad \text{and} \\
\pi(x) & \circ \pi(a) = \pi(xa), \quad \pi(a) \circ \pi(x) = \pi(ax)
\end{align*}
\]

for each \(a \in A \) and \(x \in A_0 \), which implies that \(\pi(A) \) is a quasi \(*\)-subalgebra of \(\pi(\overline{A_0}[\tau_w]) \). Hence, \(\pi(A) \) is a locally convex quasi \(*\)-algebra over \(\pi(A_0) \). So, the proof is complete.

Let \(A_0[\| \cdot \|_0] \) be a \(C^* \)-algebra with \(I \) and \(\tau \) a locally convex topology on \(A_0 \) such that \(\tau < \| \cdot \|_0 \) and \(A_0[\tau] \) a locally convex \(*\)-algebra whose multiplication is not jointly continuous.

In general, \(\overline{A_0}[\tau] \) is a quasi \(*\)-algebra over \(A_0 \) (but not a \(*\)-algebra!). For this reason, the theory of quasi \(*\)-algebras must be used. We remark that for any \(A \in C^*(A_0, \tau), \overline{A}[\tau] = \overline{A_0}[\tau] \) as locally convex spaces, but \(\overline{A}[\tau] \) is different from \(\overline{A_0}[\tau] \) as a quasi \(*\)-algebra. Moreover, the wedge \(\overline{A_0}[\tau]^+ \) of the quasi\(*\)-algebra \(\overline{A_0}[\tau] \) over \(A_0 \), defined as the \(\tau \)-closure of the positive cone \((A_0)_+ \), does not necessarily coincide with the wedge \(\overline{A}[\tau]^+ \) of the quasi \(*\)-algebra \(\overline{A}[\tau] \) over \(A \), in contrast with Case 1 (see the discussion before Theorem 2.4).

A linear functional \(f \) on \(\overline{A_0}[\tau] \), such that \(f(x) \geq 0 \), for each \(x \in \overline{A_0}[\tau]^+ \), is said to be strongly positive linear functional on the quasi \(*\)-algebra \(\overline{A_0}[\tau] \) over \(A_0 \).

Regarding the representation theory of \(\overline{A_0}[\tau] \) we have the next

Theorem 3.3. The following statements are equivalent:

(i) \(\overline{A_0}[\tau]^+ \cap (-\overline{A_0}[\tau]^+) = \{0\} \).

(ii) There exists a faithful \((\tau - \tau_w) \)-continuous quasi \(*\)-representation of the quasi \(*\)-algebra \(\overline{A_0}[\tau] \) over \(A_0 \).

Proof. (i) \(\Rightarrow \) (ii) Let \(\mathcal{F} \) be the set of all \(\tau \)-continuous strongly positive linear functionals on the quasi \(*\)-algebra \(\overline{A_0}[\tau] \) over \(A_0 \). For any \(f \in \mathcal{F} \) we denote by \((\pi_f, \lambda_f, \mathcal{H}_f) \) the GNS-construction for \(f \mid A_0 \). Let \(f \in \mathcal{F} \). For any \(a \in \overline{A_0}[\tau] \) we put

\[
< \lambda_f(a), \lambda_f(x) > = f(x^*a), \quad x \in A_0.
\]
Then, since \(f \) is \(\tau \)-continuous, it follows that
\[
|f(x^*a)|^2 = \lim_{\alpha} |f(x^*x_\alpha)|^2 \leq \lim_{\alpha} f(x^*x)f(x_\alpha^*x_\alpha),
\]
for each \(a \in \tilde{A}_0[\tau] \) and \(x \in A_0 \), where \(\{x_\alpha\} \) is a net in \(A_0 \) converging to \(a \) with respect to \(\tau \); it follows that \(\tilde{\lambda}_f(a) \) is well-defined and belongs to the algebraic conjugate dual \(\lambda_f(A_0)^{\dagger} \) of the vector space \(\lambda_f(A_0) \). It is clear that \(\tilde{\lambda}_f \) is a linear map of \(\tilde{A}_0[\tau] \) into the vector space \(\lambda_f(A_0)^{\dagger} \), which is an extension of \(\lambda_f \). Put
\[
D(\pi) := \{(\lambda_f(x))_{f \in F} \in \bigoplus f \in F H_f : x_f \in A_0 \text{ and } \lambda_f(x_f) = 0 \text{ except for finite } f \in F \text{ and for } (\lambda_f(x_f)) \in D(\pi),
\]
\[
< (\tilde{\lambda}_f(a_f)), (\lambda_f(x_f)) > = \sum_{f \in F} < \tilde{\lambda}_f(a_f), \lambda_f(x_f) > = \sum_{f \in F} f(x^*f)a_f, \ a_f \in \tilde{A}_0[\tau].
\]
Then \((\tilde{\lambda}_f(a_f)) \in D(\pi)^{\dagger} \). Furthermore, for any \(a \in A \), put
\[
\pi(a)(\lambda_f(x_f)) = (\tilde{\lambda}_f(ax_f)), \ (\lambda_f(x_f)) \in D(\pi).
\]
It is easily shown that \(\pi \) is a quasi \(* \)-representation of the quasi \(* \)-algebra \(\tilde{A}_0[\tau] \) over \(A_0 \). Moreover, the \((\tau - \tau_w) \)-continuity of \(\pi \) follows from
\[
< \pi(a)(\lambda_f(x_f)), \ (\lambda_f(y_f)) > = \sum_{f \in F} f(y^*f)ax_f,
\]
for any \(a \in A \) and \(\lambda_f(x_f) \) and \(\lambda_f(y_f) \) in \(D(\pi) \) and from the \(\tau \)-continuity of \(f \in F \). The faithfulness of \(\pi \) is shown in a similar way as in the proof of Theorem 2.4, (i) \(\Rightarrow \) (v).

(ii) \(\Rightarrow \) (i) Let \(\pi \) be a faithful \((\tau - \tau_w) \)-continuous quasi \(* \)-representation of \(\tilde{A}_0[\tau] \) and \(a \in \tilde{A}_0[\tau] \cap (-\tilde{A}_0[\tau]) \). Then, there is a net \(\{x_\alpha\} \) in \((A_0)_{+} \) such that \(x_\alpha \overset{\tau}{\rightarrow} a \). By the \((\tau - \tau_w) \)-continuity of \(\pi \) we now have
\[
< \pi(a)\xi, \xi > = \lim_{\alpha} \pi(x_\alpha)\xi|\xi > 0 \text{ and similarly } < \pi(-a)\xi, \xi > > 0,
\]
for each \(\xi \in D(\pi) \). Hence, \(< \pi(a)\xi, \xi > = 0 \) for each \(\xi \in D(\pi) \), which implies \(< \pi(a)\xi, \eta > = 0 \) for any \(\xi, \eta \in D(\pi) \), that is \(\pi(a) = 0 \). By the faithfulness of \(\pi \) we have \(a = 0 \). This completes the proof.

It is natural to consider the question: When there exists a faithful \(* \)-representation \(\pi \) of the quasi \(* \)-algebra \(\tilde{A}_0[\tau] \) over \(A_0 \) (into \(L^1(D(\pi), H_\pi) \))? For that, we define the following notion: A subset \(\mathcal{G} \) of \(F \) is said to be separating if \(a \in \tilde{A}_0[\tau] \) with \(f(a) = 0 \), for each \(f \in \mathcal{G} \), implies \(a = 0 \). For example, if \(F \) is separating and \(\mathcal{G} \) is dense in \(F \) with respect to the weak\(^*\)-topology, then \(\mathcal{G} \) is separating.

Proposition 3.4. The following statements are equivalent:
(i) There exists a faithful $(\tau - \tau_w)$-continuous \ast-representation π of the quasi \ast-algebra $\mathcal{A}_0[\tau]$ over \mathcal{A}_0 (into $L^+(D(\pi), \mathcal{H}_\pi)$).

(ii) $\mathcal{A}_0[\tau]_+ \cap (-\mathcal{A}_0[\tau]_+) = \{0\}$ and \mathcal{F}_b is separating, where

$$\mathcal{F}_b = \{ f \in \mathcal{F} : \forall a \in \mathcal{A}_0[\tau] \exists \gamma_a > 0 \text{ with } |f(a^* x)|^2 \leq \gamma_a f(x^* x), \forall x \in \mathcal{A}_0 \}. $$

Proof. (i) \Rightarrow (ii) By Theorem 3.3 we have $\mathcal{A}_0[\tau]_+ \cap (-\mathcal{A}_0[\tau]_+) = \{0\}$. For each $\xi \in D(\pi)$ we put $f_\xi(a) = (\pi(a)\xi, a \in \mathcal{A}_0[\tau]$. Then it is easily shown that $\{f_\xi : \xi \in D\}$ is contained in \mathcal{F}_b and it is separating by the faithfulness of π. Hence, \mathcal{F}_b is separating.

(ii) \Rightarrow (i) As shown in the proof of (i) \Rightarrow (ii) in Theorem 3.3, $\mathcal{A}_0[\tau]_+ \cap (-\mathcal{A}_0[\tau]_+) = \{0\}$ for each $f \in \mathcal{F}$ and $a \in \mathcal{A}_0[\tau]$. Take arbitrary $f \in \mathcal{F}_b$ and $a \in \mathcal{A}_0[\tau]$. Then, since

$$|<\tilde{\lambda}_f(a), \lambda_f(x)>|^2 = |f(x^* a)|^2 \leq \gamma_a f(x^* x),$$

for each $x \in \mathcal{A}_0$, it follows from the Riesz theorem that $\tilde{\lambda}_f(a)$ is regarded as an element of \mathcal{H}_f. Now we put

$$D(\pi) = \{((\lambda_f(x_f))\}_{x_f \in \mathcal{F}} : x_f \in \mathcal{A}_0 \text{ and } \lambda_f(x_f) = 0 \text{ except for finite } f \in \mathcal{F}_b \}$$

and for $a \in \mathcal{A}_0[\tau]$, $\pi(a)((\lambda_f(ax_f))) = ((\tilde{\lambda}_f(ax_f)))$, $(\lambda_f(x_f)) \in D(\pi)$.

Then, π is a \ast-representation of $\mathcal{A}_0[\tau]$ into $L^+(D(\pi), \mathcal{H}_\pi)$. Furthermore, it is easily shown that π is $(\tau - \tau_w)$-continuous by the τ-continuity of every $f \in \mathcal{F}_b$, and π is faithful since \mathcal{F}_b is separating. This completes the proof.

4. Examples

In this section we give some examples, illustrating the results presented in Sections 2 and 3.

Example 4.1. Let $\mathcal{A}[\tau]$ be a pro-C^*-algebra, or more generally a C^*-like locally convex \ast-algebra with a C^*-like family $\Gamma = \{p_\lambda\}_{\lambda \in \Lambda}$ of seminorms determining the topology τ. Then, $p_\Gamma \equiv \sup_\lambda p_\lambda$ is a C^*-norm on the C^*-algebra $\mathcal{A}_0 \equiv D(p_\Gamma) := \{x \in \mathcal{A} : p_\Gamma(x) < \infty\}$ and $\mathcal{A} \equiv \mathcal{A}_0[\tau]$. In this case, $B_\Gamma \equiv \mathcal{U}(p_\Gamma) = \mathcal{U}(p_\Gamma)$. Here we give a concrete example.

Let Ω be a locally compact space. We consider the following locally convex \ast-algebras of functions on Ω with the usual operations $f + g, \lambda f, fg$ and the complex conjugate as involution:

- $C_0(\Omega)$: the C^*-algebra of all continuous functions on Ω which converge to 0 at the infinite point;
- $C_b(\Omega)$: the C^*-algebra of all continuous and bounded functions on Ω;
- $B(\Omega)$: the C^*-algebra of all bounded functions on Ω;
$C(\Omega)$: the pro-C^*-algebra of all continuous functions on Ω equipped with the locally uniform topology τ_u defined by the family $\{\| \cdot \|_K : K$ a compact subset of $\Omega\}$ of C^*-seminorms with $\|f\|_K := \sup_{t \in K} |f(t)|$; $F(\Omega)$: the pro-C^*-algebra of all functions on Ω with the simple convergence topology τ_s defined by the family of C^*-seminorms $\{p_t : t \in \Omega\}$ with $p_t(f) := |f(t)|$. Then,

$$
C_0(\Omega) \subset C_b(\Omega) \subset C(\Omega) = \widehat{C_0(\Omega)}[\tau_u] = \widehat{C_b(\Omega)}[\tau_u] \cap \widehat{B(\Omega)}[\tau_s] = \widehat{C_b(\Omega)}[\tau_s] = \mathcal{F}(\Omega).
$$

Example 4.2. Let $A[\tau]$ be a GB^*-algebra over B_0. Then $A[B_0][\| \cdot \|_{B_0}]$ is a C^*-algebra and $A[B_0][\tau] = A[\tau]$. In this case, $B_\tau = \mathcal{U}(A[B_0]) = \mathcal{U}(A[B_0])$. The Arens algebra (see [5]) $A = L^\omega[0, 1] := \bigcap_{1 \leq p < \infty} L^p[0, 1]$ is a GB^*-algebra with the usual operations $f + g, \lambda f, fg$, usual involution f^* and the topology τ_w defined by the family $\{\| \cdot \|_p : 1 \leq p < \infty\}$ of the L^p-norms; moreover,

$$
A[B_0] = L^\infty[0, 1] \subset L^\omega[0, 1] = \widehat{L^\infty[0, 1]}[\tau_u]; \quad \text{and}
$$

$$
L^\omega[0, 1][\| \cdot \|_p] = L^p[0, 1], \quad 1 \leq p \leq \infty,
$$

where $L^p[0, 1]$ is a Banach quasi $*$-algebra over $L^\infty[0, 1]$.

Example 4.3. (1) The $*$-algebra $B(\mathcal{H})$ of all bounded linear operators on a Hilbert space \mathcal{H} is a locally convex $*$-algebra equipped with the weak topology τ_w. We investigate the structure of $\widehat{B(\mathcal{H})}[\tau_w]$. Let $S(\mathcal{H})$ be the set of all sesquilinear forms on $\mathcal{H} \times \mathcal{H}$. Then $S(\mathcal{H})$ is a complete locally convex space under the weak topology τ_w defined by the family $\{p_{\xi, \eta}(\cdot) : \xi, \eta \in \mathcal{H}\}$ of sesquilinear forms with $p_{\xi, \eta}(\varphi) = |\varphi(\xi, \eta)|$, $\varphi \in S(\mathcal{H})$. An element φ of $S(\mathcal{H})$ is said to be bounded if there exists a constant $\gamma > 0$ such that $|\varphi(\xi, \eta)| \leq \gamma \|\xi\| \|\eta\|$ for each $\xi, \eta \in \mathcal{H}$. Denote by $S_b(\mathcal{H})$ the set of all bounded sesquilinear forms on $\mathcal{H} \times \mathcal{H}$, and put $S(\mathcal{H})_+ \equiv \{\varphi \in S(\mathcal{H}) : \varphi \geq 0 \iff \varphi(\xi, \xi) \geq 0, \forall \xi \in \mathcal{H}\}$ and $S_b(\mathcal{H})_+ \equiv \{\varphi \in S_b(\mathcal{H}) : \varphi \geq 0\}$. It is easily shown that $\varphi \in S_b(\mathcal{H})_+$ iff there exists an element A of $B(\mathcal{H})$ such that $\varphi(\xi, \eta) = \varphi_A(\xi, \eta) := (A\xi)|\eta|$ for any $\xi, \eta \in \mathcal{H}$, and $\varphi \in S_b(\mathcal{H})_+$ iff $A \geq 0$. Hence, $S_b(\mathcal{H})[\tau_w]$ is a locally convex $*$-algebra equipped with the multiplication $\varphi_A\varphi_B := \varphi_{AB}$ and the involution $\varphi_A^* := \varphi_{A^*}$; it is also isomorphic to the locally convex $*$-algebra $B(\mathcal{H})[\tau_w]$ with respect to the map $B(\mathcal{H})[\tau_w] \ni A \mapsto \varphi_A \in S_b(\mathcal{H})[\tau_w]$. So, $B(\mathcal{H})[\tau_w]$ is isomorphic to $\widehat{S_b(\mathcal{H})}[\tau_w] = S(\mathcal{H})$ and it is a locally convex quasi $*$-algebra over $B(\mathcal{H})$ under the multiplications

$$(\varphi \circ \varphi_A)(\xi, \eta) := \varphi(A\xi, \eta), \quad (\varphi_A \circ \varphi)(\xi, \eta) := \varphi(\xi, A^*\eta), \quad \xi, \eta \in \mathcal{H},$$

117
for \(A \in \mathcal{B}(\mathcal{H}) \) and \(\varphi \in \hat{S}_b(\mathcal{H})[\tau_w] \). Furthermore, it is easily shown that
\[
\overline{\mathcal{B}(\mathcal{H})}[\tau_w]_+ \cap (-\overline{\mathcal{B}(\mathcal{H})}[\tau_w]_+) = \{0\}.
\]

(2) Let \(D \) be a dense subspace in a Hilbert space \(\mathcal{H} \). We introduce on \(L^1(D,\mathcal{H}) \), the strong\(^*\)-topology \(\tau_D^* \) defined by the family \(\{ p^*_\xi, p^*_x : \xi \in D \} \) of seminorms with \(p^*_\xi(X) := \|X\xi\|, p^*_x(X) := \|X^*\xi\|, X \in L^1(D,\mathcal{H}). \) Then, \((\mathcal{B}(\mathcal{H}) \uparrow D) \, [\tau_D] = L^1(D,\mathcal{H}), \) but \((\mathcal{B}(\mathcal{H}) \uparrow D) \, [\tau_{D*}] \) is not a locally convex \(*\)-algebra, and so \(L^1(D,\mathcal{H}) \) is not a locally convex \(*\)-algebra over \(\mathcal{B}(\mathcal{H}) \uparrow D \). We put
\[
B(D) := \{A \uparrow D : A \in \mathcal{B}(\mathcal{H}), AD \subset D \text{ and } A^*D \subset D\}.
\]
Then, \(L^1(D,\mathcal{H}) \) is a quasi \(*\)-algebra over \(B(D) \), but as \(\overline{B(D)}[\tau_{D*}] \subseteq L^1(D,\mathcal{H}) \), in general, \(L^1(D,\mathcal{H})[\tau_{D*}] \) is not necessarily a locally convex quasi \(*\)-algebra over \(B(D) \). Let \(H \) be an unbounded positive self-adjoint operator on \(\mathcal{H} \) with \(H \geq I \), \(H = \int_1^\infty \lambda \, dE_H(\lambda) \) the spectral resolution of \(H \) and \(\mathcal{D}^\infty(H) = \bigcap_{n=1}^\infty \mathcal{D}(H^n) \). Then, for any \(A \in B(\mathcal{H}), E_H(n)AE_H(n) \in \mathcal{B}(\mathcal{D}^\infty(H)), \) for each \(n \in \mathbb{N} \) and for \(n \to \infty \) it converges to \(A \) with respect to \(\tau_{D*}^\infty(H) \); so \(L^1(\mathcal{D}^\infty(H),\mathcal{H})[\tau_{D*}^\infty(H)] \) is a locally convex quasi \(*\)-algebra over \(\mathcal{B}(\mathcal{D}^\infty(H)) \).

Example 4.4. Let \(\mathcal{A}_b \) be a unital \(C^* \)-algebra, with norm \(\| \cdot \|_b \) and involution \(\# \). Let \(\mathcal{A}[\| \cdot \|] \) be a right Banach module over the \(C^* \)-algebra \(\mathcal{A}_b \), with isometric involution \(* \) and such that \(\mathcal{A}_b \subset \mathcal{A} \). Set \(\mathcal{A}_* := (\mathcal{A}_b)^* \). We say that \(\{\mathcal{A}, *, \mathcal{A}_b, b\} \) is a \(CQ^* \)-algebra if

(i) \(\mathcal{A}_* \) is dense in \(\mathcal{A} \) with respect to its norm \(\| \cdot \| \);
(ii) \(\mathcal{A}_0 \equiv \mathcal{A}_b \cap \mathcal{A}_* \) is dense in \(\mathcal{A}_b \) with respect to its norm \(\| \cdot \|_b \);
(iii) \((xy)^* = y^*x^* \), \(\forall x, y \in \mathcal{A}_0 \);
(iv) \(\|x\|_b = \sup_{a \in \mathcal{A}_b, \|a\| \leq 1} \|ax\|, \ x \in \mathcal{A}_b \).

Since \(* \) is isometric, it is easy to see that the space \(\mathcal{A}_* \) itself is a \(C^* \)-algebra with respect to the involution \(x^\# \equiv (x^*)^* \) and the norm \(\|x\|_b \equiv \|x^\#\|_b \). A \(CQ^* \)-algebra is called proper if \(\mathcal{A}_b = \mathcal{A}_0 \). For \(CQ^* \)-algebras we refer to [9, 10].

Let \(\{\mathcal{A}, *, \mathcal{A}_b, b\} \) be a proper \(CQ^* \)-algebra. Then we have
\[
\|xy\| \leq \|x\|_b \|y\|_b, \quad \|xy\| \leq \|y\| \|x\|_b, \quad \|x^\#\| = \|x\| \text{ and } (xy)^* = y^*x^*,
\]
for any \(x, y \in \mathcal{A}_b \), and so \(\mathcal{A}[\| \cdot \|] \) is a locally convex \(*\)-algebra with the involution \(* \). Furthermore, since \(\mathcal{A} = \overline{\mathcal{A}_b[\| \cdot \|]} \), it follows that \(\mathcal{A}[\| \cdot \|] \) is a locally convex quasi \(*\)-algebra over \(\mathcal{A}_b \). Consider the set \(S_\varphi(A)_+ \) of all sesquilinear forms \(\varphi \) on \(\mathcal{A} \times \mathcal{A} \) such that

(i) \(\varphi(a, a) \geq 0, \ \forall a \in \mathcal{A} \);
(ii) \(\varphi(ax, y) = \varphi(x, a^*y), \ \forall a \in \mathcal{A}, \forall x, y \in \mathcal{A}_b \).
(i) \(|\varphi(a,b)| \leq \|a\|\|b\|\), \quad \forall a, b \in \mathcal{A}.

Then, \((\mathcal{A}, \ast, \mathcal{A}_0, \mathbf{b})\) is called *-semisimple if \(a \in \mathcal{A}\) and \(\varphi(a,a) = 0\), for every \(\varphi \in S_\mathcal{A}(\mathcal{A})_{++}\), implies \(a = 0\). Suppose \((\mathcal{A}, \ast, \mathcal{A}_0, \mathbf{b})\) is a *-semisimple proper CQ*-algebra. Then \(\mathcal{A}_0 \cap (-\mathcal{A}_0) = \{0\}\). Indeed, for any \(\varphi \in S_\mathcal{A}(\mathcal{A})_{++}\) we define a strongly positive linear functional on the quasi *-algebra \(\mathcal{A}\) over \(\mathcal{A}_0\) by \(f_\varphi(a) = \varphi(a, 1), a \in \mathcal{A}\). Take an arbitrary \(h \in \mathcal{A}_0 \cap (-\mathcal{A}_0)\). Then,

\[
f_\varphi(h) = \lim_{n \to \infty} f_\varphi(x_n) \geq 0,
\]

where \(\{x_n\} \subset (\mathcal{A}_0)_{++}\) converges to \(h\) with respect to \(\|\cdot\|\). Thus, \(f_\varphi(h) = 0\), for each \(\varphi \in S_\mathcal{A}(\mathcal{A})_{++}\). We want to prove that \(\varphi(h, h) = 0\) for each \(\varphi \in S_\mathcal{A}(\mathcal{A})_{++}\). Let \(x \in \mathcal{A}_0\) with \(\|x\| \leq 1\). Then, we may define an element \(\varphi_x\) of \(S_\mathcal{A}(\mathcal{A})_{++}\) by \(\varphi_x(a, b) = \varphi(ax, bx)\) with \(a, b \in \mathcal{A}\). Hence, \(\varphi(hx, x) = 0\) for each \(x \in \mathcal{A}_0\), which implies that \(\varphi(hx, y) = 0\) for all \(x, y \in \mathcal{A}_0\). Thus,

\[
\varphi(h, h) = \lim_{n \to \infty} \varphi(h, x_n) = 0, \quad \forall \varphi \in S_\mathcal{A}(\mathcal{A})_{++}, \text{ therefore } h = 0,
\]

from the *-semisimplicity of \((\mathcal{A}, \ast, \mathcal{A}_0, \mathbf{b})\).

REFERENCES

Fabio Bagarello, Dipartimento di Metodi e Modelli Matematici, Facoltà di ingegneria, Università di Palermo, Palermo, I-90128, Italy
E-mail address: bagarell@unipa.it
MARIA FRAGOULOPOULOU, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ATHENS, ATHENS, 15784, GREECE
E-mail address: mfragoul@cc.uoa.gr

ATSUSHI INOUE, DEPARTMENT OF APPLIED MATHEMATICS, FUKUOKA UNIVERSITY, FUKUOKA, 814-0180, JAPAN
E-mail address: a-inoue@fukuoka-u.ac.jp

CAMILLO TRAPANI, DIPARTIMENTO DI MATEMATICA ED APPLICAZIONI, UNIVERSITÀ DI PALERMO, PALERMO, I-90123, ITALY
E-mail address: trapani@unipa.it