Osborne-Rubinstein def. 89.1 and Trees

Just in case you need to compare this definition with the more common based on the concept of tree.

Definition. Binary relation \succ is asymmetric if $x \succ y \Rightarrow \neg(y \succ x)$; it is a total order if $x \neq y \Rightarrow (x \succ y) \lor (y \succ x)$. A least element for \succ is an x such that $x' \succ x$ for all $x' \neq x$. By $x \prec y$ we mean $y \succ x$.

A pair (H, \succ) , where H is a set and \succ is a binary relation on it, is a *tree* if \succ has a least element \emptyset and for each $h \in H$ the set $B(h) = \{h' : h' \prec h\}$ is totally ordered by \succ .

The set H in definition 89.1 becomes a tree (H, \succ) as follows. For $h = (a^1, a^2, \ldots a^k) \in H$ and $1 \leq m \leq k$ define its *m*-truncation as $\tau_m(h) = (a^1, a^2, \ldots a^m)$. Then define \succ on H as follows: (i) $\emptyset \prec h$ for all $h \neq \emptyset$; (ii) for all $h, h' \neq \emptyset$, $h' \prec h$ if there is m < k such that $h' = \tau_m(h)$.

That's all. So you can call h a "node" if you like.