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Abstract. A coherence-based probability semantics for categorical syl-
logisms of Figure I, which have transitive structures, has been proposed
recently (Gilio, Pfeifer, & Sanfilippo [15]). We extend this work by study-
ing Figure II under coherence. Camestres is an example of a Figure II syl-
logism: from Every P is M and No S is M infer No S is P . We interpret
these sentences by suitable conditional probability assessments. Since the
probabilistic inference of sP |S from the premise set {M |P, ĎM |S} is not
informative, we add p(S|(S ∨ P )) > 0 as a probabilistic constraint (i.e.,
an “existential import assumption”) to obtain probabilistic informative-
ness. We show how to propagate the assigned (precise or interval-valued)
probabilities to the sequence of conditional events (M |P, ĎM |S, S|(S∨P ))
to the conclusion sP |S. Thereby, we give a probabilistic meaning to the
other syllogisms of Figure II. Moreover, our semantics also allows for
generalizing the traditional syllogisms to new ones involving generalized
quantifiers (like Most S are P ) and syllogisms in terms of defaults and
negated defaults.

Keywords: Categorical syllogisms · Coherence · Conditional events
Defaults · Generalized quantifiers · Imprecise probability

1 Motivation and Outline

There is a long tradition in logic to investigate categorical syllogisms that goes
back to Aristotle’s Analytica Priora. However, not many authors proposed prob-
abilistic semantics for categorical syllogisms (see, e.g., [9,10,13,15,23,38]) to
overcome formal restrictions imposed by logic, like its monotonicity (i.e., the
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inability to retract conclusions in the light of new evidence) or its qualitative
nature (i.e., the inability to express degrees of belief ). The main goal of building
a probabilistic semantics is therefore to manage nonmonotonicity and degrees
of belief, which are necessary for the formalization of commonsense reasoning.
Although this paper is about probabilistic reasoning, applications of our results
may include (i) relating ancient syllogisms to nonmonotonic reasoning by propos-
ing a new nonmonotonic rule of inference and (ii) proposing a new rationality
framework for the psychology of reasoning, specifically, for reasoning about a
particular set of quantified statements (see, e.g., [29–32,35]). Moreover, (iii) our
results are also applicable in formal semantics: specifically, our probabilistic app-
roach is scalable in the sense that the proposed semantics allows for managing
not only traditional logical quantifiers but also the much bigger superset of gen-
eralized quantifiers.

What are classical categorical syllogisms? They are valid argument forms
consisting of two premises and a conclusion, which are composed of basic syllo-
gistic sentence types (see, e.g., [28]): (A) Every a is b, (E) No a is b, (I) Some a
is b, and (O) Some a is not b, where “a” and “b” denote two of the three cate-
gorical terms M (“middle term”), P (“predicate term”), or S (“subject term”).
The M term appears only in the premises and are combined with P (in the
first premise) and S (in the second premise). The predicates contained in the
conclusion appear only in the order (S, P ). By all possible permutations of the
predicate order, four syllogistic figures result under the given restrictions. Syl-
logisms of Figure I, for example, have a transitive structure, i.e., M is P , S is
M , therefore S is P . Consider (Modus) Barbara as an instance of a syllogism of
Figure I: Every M is P , Every S is M , therefore Every S is P . The syllogism’s
name traditionally encodes logical properties. For the present purpose, we only
recall that vocals refer to the syllogistic sentence type: for instance, Barbara
involves only sentences of type (A) (see, e.g., [28] for details). Our paper is
based on [15,19], where a coherence-based probability semantics for categorical
syllogisms of Figure I was studied. We extend this work to Figure II, which has
the following structure: P is M , S is M , therefore S is P . Camestres is an
instance of a Figure II syllogism: Every P is M , No S is M , therefore No S is
P . Camestres involves the sentence types (A) and (E).

While the S, M , and P terms are interpreted as predicate terms in first order
logic, we interpret them as events as follows. Imagine a random experiment where
the (random) outcome is denoted by X. Consider, for example, the predicate S.
Depending on the outcome of the experiment, X may satisfy or not satisfy
the predicate S. Then, we denote by ES the event “X satisfies S” (the event
ES is true if X satisfies the predicate S and ES is false if X does not satisfy
S). We conceive the predicate S as the event ES , which will be true or false.
Thus, we simply identify ES by S (in this sense S is both a predicate and an
event). The same reasoning applies to the P and M terms, which are in our
context both predicates and events. On the level of events, we associate pairs of
predicates (S, P ) with the corresponding conditional event P |S. On the level of
probability assessments, we interpret the degree of belief in syllogistic sentence
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(A) by p(P |S) = 1, (E) by p( sP |S) = 1, (I) by P (P |S) > 0, and we interpret
(O) by p( sP |S) > 0 (see also [9,15] for similar interpretations and [33,34] for
basic relations among these probabilistic sentence types). Thus, (A) and (E)
are interpreted as precise probability assessments and (I) and (O) by imprecise
probability assessments.

We note that, like the probabilistic Modus Barbara [15], the probabilis-
tic Camestres is not probabilistically informative without existential import
assumption: indeed, p(M |P ) = 1, p(ĎM |S) = 1 =⇒ 0 ! p( sP |S) ! 1. We
propose to add the conditional event existential import (i.e., p(S|(S ∨ P )) > 0,
which was originally proposed in the context of Weak Transitivity, see [15]) to
the premise set to make Camestres probabilistically informative:

(Camestres) p(M |P ) = 1, p(ĎM |S) = 1, and p(S|(S ∨ P )) > 0 =⇒ p( sP |S) = 1.

After recalling some preliminary notions and results in Sect. 2, we show how
to propagate the assigned probabilities to the sequence of conditional events
(M |P, ĎM |S, S|(S ∨P )) to the conclusion sP |S in Sect. 3. This result is applied in
Sect. 4, where we give a probabilistic meaning to the other syllogisms of Figure II.
Section 5 concludes by remarks on further applications (generalized quantifiers
and nonmonotonic reasoning) and future work.

2 Preliminary Notions and Results

In this section we recall selected key features of coherence (for more details
see, e.g., [5,7,11,12,20,21,27,37]). Given two events E and H , with H ̸= ⊥,
the conditional event E|H is defined as a three-valued logical entity which is
true if EH (i.e., E ∧H ) is true, false if sEH is true, and void if H is false. In
betting terms, assessing p(E|H ) = x means that, for every real number s, you
are willing to pay an amount s · x and to receive s, or 0, or s · x, according to
whether EH is true, or sEH is true, or sH is true (i.e., the bet is called off),
respectively. In these cases the random gain is G = sH (E − x). More generally
speaking, consider a real-valued function p : K → R, where K is an arbitrary
(possibly not finite) family of conditional events. Let F = (E1|H1, . . . , En|Hn)
be a sequence of conditional events, where Ei|Hi ∈ K, i = 1, . . . , n, and let
P = (p1, . . . , pn) be the vector of values pi = p(Ei|Hi), where i = 1, . . . , n. We
denote by H0 the disjunction H1 ∨ · · · ∨ Hn. With the pair (F ,P) we associate
the random gain G =

∑n
i=1 siHi(Ei − pi), where s1, . . . , sn are n arbitrary real

numbers. G represents the net gain of n transactions. Let GH0 denote the set of
possible values of G restricted to H0, that is, the values of G when at least one
conditioning event is true.

Definition 1. Function p defined on K is coherent if and only if, for every inte-
ger n, for every sequence F of n conditional events in K and for every s1, . . . , sn,
it holds that: minGH0 ! 0 ! maxGH0 .
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Intuitively, Definition 1, means in betting terms that a probability assessment
is coherent if and only if, in any finite combination of n bets, it cannot happen
that the values in GH0 are all positive, or all negative (no Dutch Book).

We recall the fundamental theorem of de Finetti for conditional events, which
states that a coherent assessment of premises can always be coherently extended
to a conclusion:

Theorem 1. Let a coherent probability assessment P = (p1, . . . , pn) on a
sequence F = (E1|H1, . . . , En|Hn) be given. Moreover, given a further condi-
tional event En+1|Hn+1. Then, there exists a suitable closed interval [z′, z′′] ⊆
[0, 1] such that the extension (P, z) of P to (F , En+1|Hn+1) is coherent if and
only if z ∈ [z′, z′′].

For applying Theorem 1, we now recall an algorithm which allows for comput-
ing the interval of coherent extensions [z′, z′′] on En+1|Hn+1 from a coherent
probability assessment P on a finite sequence of conditional events F (see [15,
Algorithm 1], which is originally based on [5, Algorithm 2]).

Algorithm 1. Let F = (E1|H1, . . . , En|Hn) be a sequence of conditional events
and P = (p1, . . . , pn) be a coherent precise probability assessment on F , where
pj = p(Ej |Hj) ∈ [0, 1], j = 1, . . . , n. Moreover, let En+1|Hn+1 be a further
conditional event and denote by Jn+1 the set {1, . . . , n + 1}. The steps below
describe the computation of the lower bound z′ (resp., the upper bound z′′) for
the coherent extensions z = p(En+1|Hn+1).

– Step 0. Expand the expression
∧

j∈Jn+1

(
EjHj ∨ sEjHj ∨ sHj

)
and denote

by C1, . . . , Cm the constituents contained in H0 =
∨

j∈Jn+1
Hj associated

with (F , En+1|Hn+1). Then, construct the following system in the unknowns
λ1, . . . ,λm, z

⎧
⎨

⎩

∑
r:Cr⊆En+1Hn+1

λr = z
∑

r:Cr⊆Hn+1
λr ;∑

r:Cr⊆EjHj
λr = pj

∑
r:Cr⊆Hj

λr, j ∈ Jn ;∑
r∈Jm

λr = 1; λr ≥ 0, r ∈ Jm .
(1)

– Step 1. Check the solvability of system (1) under the condition z = 0 (resp.,
z = 1). If the system (1) is not solvable go to Step 2, otherwise go to Step 3.

– Step 2. Solve the following linear programming problem

Compute : γ′ = min
∑

r:Cr⊆En+1Hn+1

λr

(respectively : γ′′ = max
∑

r:Cr⊆En+1Hn+1

λr )

subject to:
{∑

r:Cr⊆EjHj
λr = pj

∑
r:Cr⊆Hj

λr, j ∈ Jn ;∑
r:Cr⊆Hn+1

λr = 1; λr " 0, r ∈ Jm.

The minimum γ′ (respectively the maximum γ′′) of the objective function
coincides with z′ (respectively with z′′) and the procedure stops.
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– Step 3. For each subscript j ∈ Jn+1, compute the maximum Mj of the
function Φj =

∑
r:Cr⊆Hj

λr, subject to the constraints given by the system
(1) with z = 0 (respectively z = 1). We have the following three cases:
1. Mn+1 > 0 ;
2. Mn+1 = 0 , Mj > 0 for every j ̸= n+ 1 ;
3. Mj = 0 for j ∈ I0 = J ∪ {n+ 1} , with J ̸= ∅ .
In the first two cases z′ = 0 (respectively z′′ = 1) and the procedure stops.
In the third case, defining I0 = J ∪ {n + 1}, set Jn+1 = I0 and (F ,P) =
(FJ ,PJ ), where FJ = (Ei|Hi : i ∈ J) and PJ = (pi : i ∈ J). Then, go to
Step 0.

The procedure ends in a finite number of cycles by computing the value z′

(respectively z′′).

Remark 1. Assuming (P, z) on (F , En+1|Hn+1) coherent, each solution Λ =
(λ1, . . . ,λm) of System (1) is a coherent extension of the assessment (P, z) to
the sequence (C1|H0, . . . , Cm|H0).

Definition 2. An imprecise, or set-valued, assessment I on a finite sequence of
n conditional events F is a (possibly empty) set of precise assessments P on F .

Definition 2, introduced in [14], states that an imprecise (probability) assessment
I on a finite sequence F of n conditional events is just a (possibly empty) subset
of [0, 1]n. We recall the notions of g-coherence and total-coherence for imprecise
(in the sense of set-valued) probability assessments [15].

Definition 3. Let a sequence of n conditional events F be given. An imprecise
assessment I ⊆ [0, 1]n on F is g-coherent if and only if there exists a coherent
precise assessment P on F such that P ∈ I.

Definition 4. An imprecise assessment I on F is totally coherent (t-coherent)
if and only if the following two conditions are satisfied: (i) I is non-empty; (ii)
if P ∈ I, then P is a coherent precise assessment on F .

We denote by Π the set of all coherent precise assessments on F . We recall that if
there are no logical relations among the events E1, H1, . . . , En, Hn involved in F ,
that is E1, H1, . . . , En, Hn are logically independent, then the set Π associated
with F is the whole unit hypercube [0, 1]n. If there are logical relations, then the
set Π could be a strict subset of [0, 1]n. As it is well known Π ̸= ∅; therefore,
∅ ̸= Π ⊆ [0, 1]n.

Remark 2. We observe that:

I is g-coherent ⇐⇒ Π ∩ I ̸= ∅
I is t-coherent ⇐⇒ ∅ ̸= Π ∩ I = I.

Then: I is t-coherent ⇒ I is g-coherent.
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Given a g-coherent assessment I on a sequence of n conditional events F , for
each coherent precise assessment P on F , with P ∈ I, we denote by [αP ,βP ]
the interval of coherent extensions of P to En+1|Hn+1; that is, the assessment
(P, z) on (F , En+1|Hn+1) is coherent if and only if z ∈ [z′

P , z
′′
P ]. Then, defining

the set

Σ =
⋃

P∈Π∩I [z
′
P , z

′′
P ], (2)

for every z ∈ Σ, the assessment I × {z} is a g-coherent extension of I to
(F , En+1|Hn+1); moreover, for every z ∈ [0, 1] \Σ, the extension I × {z} of I to
(F , En+1|Hn+1) is not g-coherent. We say that Σ is the set of coherent extensions
of the imprecise assessment I on F to the conditional event En+1|Hn+1.

3 Figure II: Propagation of Probability Bounds

In this section, we prove the precise and imprecise probability propagation rules
for the inference from (B|C, sB|A,A|A ∨ C) to sC|A. We apply our results in
Sect. 4, where we give a probabilistically informative interpretation of categorical
syllogisms of Figure II.

Remark 3. Let A,B,C be logically independent events. It can be proved that the
assessment (x, y, z) on (B|C, sB|A, sC|A) is coherent for every (x, y, z) ∈ [0, 1]3,
that is, the imprecise assessment I = [0, 1]3 on (B|C, sB|A, sC|A) is totally coher-
ent. For this it is sufficient to check that each of the eight vertices of the unit cube
is coherent. Coherence can be checked, for example, by applying Algorithm 1 of
[14] or by the CkC-package [3]. Moreover, it can also be proved that the assess-
ment (x, y, t) on (B|C, sB|A,A|A ∨ C) is coherent for every (x, y, t) ∈ [0, 1]3,
that is, the imprecise assessment I = [0, 1]3 on (B|C, sB|A,A|A ∨ C) is totally
coherent.

Given a coherent probability assessment (x, y, t) on the sequence of conditional
events (B|C, sB|A,A|A∨C). The next result allows for computing the lower and
upper bounds, z′ and z′′ respectively, for the coherent extension z = p( sC|A).

Theorem 2. Let A,B,C be three logically independent events and (x, y, t) ∈
[0, 1]3 be a (coherent) assessment on the family

(
B|C, sB|A,A|A∨C

)
. Then, the

extension z = P ( sC|A) is coherent if and only if z ∈ [z′, z′′], where

[z′, z′′] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[0, 1] , if t ! x+ yt ! 1,
[x+ yt − 1

t x
, 1

]
, if x+ yt > 1,

[ t − x − yt

t (1 − x)
, 1

]
, if x+ yt < t.

Proof. We now apply Algorithm1 in a symbolic way.
Computation of the lower probability bound z′ on sC|A.
Input. F = (B|C, sB|A,A|A ∨ C), En+1|Hn+1 = sC|A.
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Step 0. The constituents associated with (B|C, sB|A,A|A∨C, sC|A) and contained
in H0 = A ∨ C are C1 = ABC,C2 = AB sC,C3 = A sBC,C4 = A sB sC,C5 = sABC,
and C6 = sA sBC. We construct the following starting system with unknowns
λ1, . . . ,λ6, z (see Remark 1):

⎧
⎪⎪⎨

⎪⎪⎩

λ2 + λ4 = z(λ1 + λ2 + λ3 + λ4), λ1 + λ5 = x(λ1 + λ3 + λ5 + λ6),
λ3 + λ4 = y(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = t(λ1 + λ2 + λ3 + λ4 + λ5 + λ6),
λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1, λi ≥ 0, i = 1, . . . , 6.

(3)

Step 1. By setting z = 0 in System (3), we obtain
⎧
⎪⎪⎨

⎪⎪⎩

λ2 + λ4 = 0, λ1 + λ5 = x,
λ3 = y(λ1 + λ3), λ1 + λ3 = t,
λ1 + λ3 + λ5 + λ6 = 1,
λi ≥ 0, i = 1, . . . , 6.

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

λ1 = t(1 − y), λ2 = 0, λ3 = yt,
λ4 = 0, λ5 = x − t(1 − y),
λ6 = 1 − x − yt,
λi ≥ 0, i = 1, . . . , 6.

(4)
The solvability of System (4) is a necessary condition for the coherence of the
assessment (x, y, t, 0) on (B|C, sB|A,A|A ∨C, sC|A). As (x, y, t) ∈ [0, 1]3, it holds
that: λ1 = t(1 − y) " 0, λ3 = yt " 0. Thus, System (4) is solvable if and only if
λ5 " 0 and λ6 " 0, that is

t − yt ! x ! 1 − yt ⇐⇒ t ! x+ yt ! 1.

We distinguish two cases: (i) x + yt > 1 ∨ x + yt < t; (ii) t ! x + yt ! 1. In
Case (i), System (4) is not solvable (which implies that the coherent extension z
of (x, y, t) must be positive). Then, we go to Step 2 of the algorithm where the
(positive) lower bound z′ is obtained by optimization. In Case (ii), System (4)
is solvable and in order to check whether z = 0 is a coherent extension, we go to
Step 3.

Case (i). We observe that in this case t cannot be 0. By Step 2 we have the
following linear programming problem:
Compute z′ = min(λ2 + λ4) subject to:

⎧
⎨

⎩

λ1 + λ5 = x(λ1 + λ3 + λ5 + λ6), λ3 + λ4 = y(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = t(λ1 + λ2 + λ3 + λ4 + λ5 + λ6),
λ1 + λ2 + λ3 + λ4 = 1, λi " 0, i = 1, . . . , 6.

(5)

In this case, the constraints in (5) can be rewritten in the following way
⎧
⎪⎪⎨

⎪⎪⎩

λ1 + λ5 = x(λ1 + λ3 + λ5 + λ6),
λ3 + λ4 = y, λ5 + λ6 = 1−t

t ,
λ1 + λ2 + λ3 + λ4 = 1,
λi " 0, i = 1, . . . , 6,

⇔

⎧
⎪⎪⎨

⎪⎪⎩

1 − y − λ2 + λ5 = x(1 − λ2 − λ4 + 1−t
t ),

λ3 = y − λ4, λ6 = 1−t
t − λ5,

λ1 = 1 − y − λ2,
λi " 0, i = 1, . . . , 6,

or equivalently
{
xλ4 + (1 − y) + λ5 = λ2(1 − x) + x

t , λ3 = y − λ4,
λ5 = 1−t

t − λ6, λ1 = 1 − y − λ2, λi " 0, i = 1, . . . , 6.
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We distinguish two (alternative) cases: (i.1) x+ yt > 1; (i.2) x+ yt < t.
Case (i.1). The constraints in (5) can be rewritten in the following way

{
x(λ2 + λ4) = x

t − (1 − y) − 1−t
t + λ2 + λ6, λ3 = y − λ4,

λ5 = 1−t
t − λ6, λ1 = 1 − y − λ2, λi " 0, i = 1, . . . , 6.

As x > 1 − ty, we observe that x > 0. Then, the minimum of z = λ2 + λ4,
obtained when λ2 = λ6 = 0, is

z′ =
1
x

(
x

t
− (1 − y) − 1 − t

t

)
=

x − t+ yt − 1 + t

xt
=

x+ yt − 1
xt

. (6)

By choosing λ2 = λ6 = 0 the constraints in (5) are satisfied with
{

λ1 = 1 − y, λ2 = 0, λ3 = y − x+yt−1
xt , λ4 = x+yt−1

xt ,
λ5 = 1−t

t , λ6 = 0, λi " 0, i = 1, . . . , 6.

In particular λ3 " 0 is satisfied because the condition x+yt−1
xt ! y, which in this

case amounts to yt(1− x) ≤ 1− x, is always satisfied. Then, the procedure stops
yielding as output z′ = x+yt−1

xt .
Case (i.2). The constraints in (5) can be rewritten in the following way

{
(1 − y) − x

t + λ5 + λ4 = λ2(1 − x) − xλ4 + λ4, λ3 = y − λ4,
λ6 = 1−t

t − λ5, λ1 = 1 − y − λ2, λi " 0, i = 1, . . . , 6,

or equivalently
{
(λ2 + λ4)(1 − x) = (1 − y) − x

t + λ4 + λ5, λ3 = y − λ4,
λ6 = 1−t

t − λ5, λ1 = 1 − y − λ2, λi " 0, i = 1, . . . , 6.

As t − yt − x > 0, that is x < t(1 − y), it holds that x < 1. Then, the minimum
of z = λ2 + λ4, obtained when λ4 = λ5 = 0, is

z′ =
1

1 − x

(
1 − y − x

t

)
=

t − yt − x

(1 − x)t
" 0.

We observe that by choosing λ4 = λ5 = 0 the constraints in (5) are satisfied,
indeed they are

{
λ1 = 1 − y, λ2 = t−yt−x

(1−x)t , λ3 = y, λ4 = 0,
λ5 = 0, λ6 = 1−t

t , λi " 0, i = 1, . . . , 6.

Then, the procedure stops yielding as output z′ = t−yt−x
(1−x)t .

Case (ii). We take Step 3 of the algorithm. We denote by Λ and S the vector
of unknowns (λ1, . . . ,λ6) and the set of solution of System (4), respectively. We
consider the following linear functions (associated with the conditioning events
H1 = C,H2 = H4 = A,H3 = A ∨ C) and their maxima in S:

Φ1(Λ) =
∑

r:Cr⊆C λr = λ1 + λ3 + λ5 + λ6,
Φ2(Λ) = Φ4(Λ) =

∑
r:Cr⊆A λr = λ1 + λ2 + λ3 + λ4,

Φ3(Λ) =
∑

r:Cr⊆A∨C λr = λ1 + λ2 + λ3 + λ4 + λ5 + λ6,
Mi = maxΛ∈S Φi(Λ), i = 1, 2, 3, 4 .

(7)
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By (4) we obtain: Φ1(Λ) = 1, Φ2(Λ) = Φ4(Λ) = t, Φ3(Λ) = 1, ∀Λ ∈ S. Then,
M1 = 1, M2 = M4 = t, and M3 = 1. We consider two subcases: t > 0; t = 0. If
t > 0, then M4 > 0 and we are in the first case of Step 3. Thus, the procedure
stops and yields z′ = 0 as output.
If t = 0, then M1 > 0,M3 > 0 and M2 = M4 = 0. Hence, we are in third case of
Step 3 with J = {2}, I0 = {2, 4} and the procedure restarts with Step 0, with F
replaced by FJ = ( sB|A).

(2nd cycle) Step 0. The constituents associated with ( sB|A, sC|A), contained
in A, are C1 = ABC,C2 = AB sC,C3 = A sBC,C4 = A sB sC. The starting system
is

{
λ3 + λ4 = y(λ1 + λ2 + λ3 + λ4), λ2 + λ4 = z(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = 1, λi " 0, i = 1, . . . , 4. (8)

(2ndcycle) Step1. By setting z = 0 in System (8), we obtain
{

λ1 = 1 − y, λ2 = λ4 = 0, λ3 = y, λi " 0, i = 1, . . . , 4. (9)

As y ∈ [0, 1], System (9) is always solvable; thus, we go to Step 3.
(2nd cycle) Step 3. We denote by Λ and S the vector of unknowns (λ1, . . . ,λ4)
and the set of solution of System (9), respectively. The conditioning events are
H2 = A and H4 = A; then the associated linear functions are: Φ2(Λ) = Φ4(Λ) =∑

r:Cr⊆A λr = λ1+λ2+λ3+λ4. From System (9), we obtain: Φ2(Λ) = Φ4(Λ) = 1,
∀Λ ∈ S; so that M2 = M4 = 1. We are in the first case of Step 3 of the algorithm;
then the procedure stops and yields z′ = 0 as output.

To summarize, for any (x, y, t) ∈ [0, 1]3 on (B|C, sB|A,A|A ∨ C), we have
computed the coherent lower bound z′ on sC|A. In particular, if t = 0, then
z′ = 0. We also have z′ = 0, when t > 0 and t ! x + yt ! 1, that is when
0 < t ! x + yt ! 1. Then, we can write that z′ = 0, when t ! x + yt ! 1.
Otherwise, we have two cases: (i.1) z′ = x+yt−1

xt , if x+ yt > 1; (i.2) z′ = t−yt−x
(1−x)t ,

if x+ yt < t.

Computation of the Upper Probability Bound z′′ on sC|A
Input and Step 0 are the same as in the proof of z′.
Step 1. By setting z = 1 in System (3), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

λ1 + λ3 = 0, λ5 = x(λ5 + λ6),
λ4 = y(λ2 + λ4), λ2 + λ4 = t,
λ2 + λ4 + λ5 + λ6 = 1,
λi " 0, i = 1, . . . , 6.

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

λ1 = λ3 = 0, λ2 = t(1 − y),
λ4 = yt, λ5 = x(1 − t),
λ6 = (1 − x)(1 − t),
λi " 0, i = 1, . . . , 6.

(10)

As (x, y, t) ∈ [0, 1]3, System (10) is solvable and we go to Step 3.
Step 3. We denote by Λ and S the vector of unknowns (λ1, . . . ,λ6) and the
set of solution of System (10), respectively. We consider the functions given in
(7). From System (10), we obtain M1 = x(1 − t) + (1 − x)(1 − t) = 1 − t,
M2 = M4 = t, and M3 = 1. If t > 0, then M4 > 0 and we are in the first
case of Step 3. Thus, the procedure stops and yields z′′ = 1 as output. If t = 0,
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then M1 > 0,M3 > 0 and M2 = M4 = 0. Hence, we are in the third case of
Step 3 with J = {2}, I0 = {2, 4} and the procedure restarts with Step 0, with F
replaced by FJ = (E2|H2) = ( sB|A) and P replaced by PJ = y.
(2nd cycle) Step 0. This is the same as the (2nd cycle) Step 0 in the proof of z′.
(2nd cycle) Step 1. By setting z = 1 in System (3), we obtain

{
λ1 + λ3 = 0, λ4 = y, λ2 = 1 − y, λi " 0, i = 1, . . . , 4. (11)

As y ∈ [0, 1], System (11) is always solvable; thus, we go to Step 3.
(2nd cycle) Step 3. Like in the (2nd cycle) Step 3 of the proof of z′, we obtain
M4 = 1. Thus, the procedure stops and yields z′′ = 1 as output. To summarize,
for any assessment (x, y, t) ∈ [0, 1]3 on (B|C, sB|A,A|A ∨ C), we have computed
the coherent upper probability bound z′′ on sC|A, which is always z′′ = 1. ⊓3

Remark 4. We observe that in Theorem 2 we do not presuppose, differently from
the classical approach, positive probability for the conditioning events (A and
C). For example, even if we assume p(A|A∨C) = t > 0 we do not require positive
probability for the conditioning event A, and p(A) could be zero (indeed, since
p(A) = p(A ∧ (A ∨ C)) = p(A|A ∨ C)p(A ∨ C), p(A) > 0 implies p(A|A ∨ C) >
0, but not vice versa). Moreover, we used a general and global approach for
obtaining the inference rule in Theorem 2 (see [1,2,6,8,24,25] on local versus
global approaches).

The next result is based on Theorem 2 and presents the set of the coher-
ent extensions of a given interval-valued probability assessment I = ([x1, x2] ×
[y1, y2]× [t1, t2]) ⊆ [0, 1]3 on the sequence on

(
B|C, sB|A,A|A∨C

)
to the further

conditional event sC|A.

Theorem 3. Let A,B,C be three logically independent events and I =
([x1, x2] × [y1, y2] × [t1, t2]) ⊆ [0, 1]3 be an imprecise assessment on(
B|C, sB|A,A|A ∨ C

)
. Then, the set Σ of the coherent extensions of I on sC|A

is the interval [z∗, z∗∗], where

[z∗, z∗∗] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[0, 1] , if (x2 + y2t1 " t1) ∧(x1 + y1t1 ! 1),
[x1 + y1t1 − 1

t1x1
, 1

]
, if x1 + y1t1 > 1,

[ t1 − x2 − y2t1
t1(1 − x2)

, 1
]
, if x2 + y2t1 < t1.

Proof. As from Remark 3 the set [0, 1]3 on
(
B|C, sB|A,A|A∨C

)
is totally coher-

ent, then I is totally coherent too. Then, Σ =
⋃

P∈I [z
′
P , z

′′
P ] = [z∗, z∗∗], where

z∗ = infP∈I z′
P and z∗∗ = supP∈I z′′

P . We distinguish three alternative cases: (i)
x1 + y1t1 > 1; (ii) x2 + y2t1 < t1; (iii) (x2 + y2t1 " t1) ∧(x1 + y1t1 ! 1).
Of course, for all three cases z∗∗ = supP∈I z′′

P = 1.
Case (i). We observe that the function x + yt : [0, 1]3 is non-decreasing in the
arguments x, y, t. Then, in this case, x + yt " x1 + y1t1 > 1 for every P =
(x, y, t) ∈ I and hence by Theorem 2 z′

P = f(x, y, t) = x+yt−1
t x for every P ∈ I.
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Moreover, f(x, y, t) : [0, 1]3 is non-decreasing in the arguments x, y, t, thus z∗ =
x1+y1t1−1

t1x1
.

Case (ii). We observe that the function x + yt − t : [0, 1]3 is non-decreasing
in the arguments x, y and non-increasing in the argument t. Then, in this case,
x+yt−t ! x2+y2t1−t1 < 0 for every P = (x, y, t) ∈ I and hence by Theorem 2
z′
P = g(x, y, t) = t−x−yt

t(1−x) for every P ∈ I. Moreover, g(x, y, t) : [0, 1]3 is non-
increasing in the arguments x, y and non-decreasing in the argument t. Thus,
z∗ = t1−x2−y2t1

t1(1−x2)
. Case (iii). In this case there exists a vector (x, y, t) ∈ I such

that t ! x+ yt ! 1 and hence by Theorem 2 z′
P = 0. Thus, z∗ = 0. ⊓3

Remark 5. By instantiating Theorem 3 with the imprecise assessment I = {1}×
[y1, 1] × [t1, 1], where t1 > 0, we obtain the following lower and upper bounds
for the conclusion [z∗, z∗∗] = [y1, 1]. Thus, for every t1 > 0: z∗ depends only on
the value of y1.

4 Some Categorical Syllogisms of Figure II

In this section we consider examples of probabilistic categorical syllogisms of
Figure II (Camestres, Camestrop, Baroco, Cesare, Cesaro, Festino) by suitable
instantiations in Theorem 2. We consider three events P,M,S corresponding to
the predicate, middle, and the subject term, respectively.

Camestres. The direct probabilistic interpretation of the categorical syllogism
“Every P is M , No S is M , therefore No S is P” would correspond to infer
p( sP |S) = 1 from the premises p(M |P ) = 1 and p(ĎM |S) = 1; however, this infer-
ence is not justified. Indeed, by Remark 3, a probability assessment (1, 1, z) on
(M |P, ĎM |S, sP |S) is coherent for every z ∈ [0, 1]. In order to construct a proba-
bilistically informative version of Camestres, a further constraint of the premise
set is needed. Like in [15], we use the conditional event existential import for fur-
ther constraining the premise set: this is defined by the conditional probability of
the conditioning event of the conclusion given the disjunction of all conditioning
events. For categorical syllogisms of Figure II the conditional event existential
import is p(S|(S ∨ P )) > 0. Then, by instantiating S,M,P in Theorem 2 for
A,B,C with x = y = 1 and t > 0 it follows that z′ = x+yt−1

t x = 1. Then,

p(M |P ) = 1, p(ĎM |S) = 1, and p(S|(S ∨ P )) > 0 =⇒ p( sP |S) = 1. (12)

Therefore, inference (12) is a probabilistically informative version of Camestres.
By instantiating S,M,P in Theorem 3 for A,B,C with x1 = x2 = 1, y1 = .6,

y2 = .9, t1 > 0, and t2 = 1, we obtain z∗ = y1 = .6 and z∗∗ = 1, i.e.,

p(M |P ) = 1, .6 ! p(ĎM |S) ! .9, and p(S|(S ∨ P )) " t1 > 0 =⇒ p( sP |S) " .6.
(13)

This can be seen as an extension of Camestres to generalized quantifiers. Specifi-
cally, the second premise can be used to represent a generalized quantified state-
ment like At least most but not all S are not-M and the conclusion can represent
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At least most S are not-P. Of course, the specific values involved in the premises
are context dependent (see also [4,26]).

We observe that, by Remark 3, every direct probabilistic interpretation of
the other categorical syllogisms of Figure II are probabilistically non-informative
without the further probabilistic constraint p(S|(S∨P )) > 0. In what follows, we
show how to construct probabilistically informative versions of other categorical
syllogisms of Figure II by suitable instantiations of Theorem 2.

Camestrop. From (12) it also follows that

p(M |P ) = 1, p(ĎM |S) = 1, and p(S|(S ∨ P )) > 0 =⇒ p( sP |S) > 0, (14)

which is a probabilistic informative interpretation of Camestrop (Every P is M ,
No S is M , therefore Some S is not P ) under the existential import assumption
(p(S|(S ∨ P )) > 0).

Baroco. By instantiating S,M,P in Theorem 2 for A,B,C with x = 1, y > 0
and t > 0 it follows that z′ = x+yt−1

t x = 1+yt−1
t = y > 0. Then,

p(M |P ) = 1, p(ĎM |S) > 0, and p(S|(S ∨ P )) > 0 =⇒ p( sP |S) > 0. (15)

Therefore, inference (15) is a probabilistically informative version of Baroco
(Every P is M , Some S is not M , therefore Some S is not P ) under the exis-
tential import.

Cesare. The direct probabilistic interpretation of the categorical syllogism “No P
is M , Every S is M , therefore No S is P” would correspond to infer p( sP |S) = 1
from the premises p(ĎM |P ) = 1 and p(M |S) = 1; However, this inference is
not probabilistically informative because it is obtained from Camestres when
M is replaced by ĎM . By instantiating S,M,P in Theorem 2 for A,B,C with
x = y = 0 and t > 0 it follows that z′ = t−x−yt

t (1−x) = 1. Then,

p(M |P ) = 0, p(ĎM |S) = 0, and p(S|(S ∨ P )) > 0 =⇒ p( sP |S) = 1.

or equivalently,

p(ĎM |P ) = 1, p(M |S) = 1, and p(S|(S ∨ P )) > 0 =⇒ p( sP |S) = 1. (16)

Therefore, inference (16) is a probabilistically informative version of Cesare
under the existential import assumption.

By instantiating S,M,P in Theorem 3 for A,B,C with x1 = x2 = 0, y1 = .1,
y2 = .4, t1 > 0, and t2 = 1, we obtain z∗ = 1 − y2 = .6 and z∗∗ = 1; i.e.,

p(M |P ) = 0, .1 ! p(ĎM |S) ! .4, and p(S|(S ∨ P )) " t1 > 0 =⇒ p( sP |S) " .6,

which is equivalent to

p(ĎM |P ) = 1, .6 ! p(M |S) ! .9, and p(S|(S ∨ P )) " t1 > 0 =⇒ p( sP |S) " .6.
(17)

Equation (17) is a generalized version of Cesare, where the second premise can
represent a generalized quantified statement like At least most but not all S are
M and the conclusion can represent At least many S are not-P.
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Cesaro. From (16) it also follows that

p(ĎM |P ) = 1, p(M |S) = 1, and p(S|(S ∨ P )) > 0 =⇒ p( sP |S) > 0, (18)

which is a probabilistically informative interpretation of Cesaro (No P is M ,
Every S is M , therefore Some S is not P ) under the existential import.

Festino. By instantiating S,M,P in Theorem 2 for A,B,C with x = 0, y < 1
and t > 0, as x+ yt < t, it follows that z′ = t−x−yt

t (1−x) = t−yt
t > 1 − y > 0. Then,

p(ĎM |P ) = 1, p(M |S) > 0, and p(S|(S ∨ P )) > 0 =⇒ p( sP |S) > 0. (19)

Therefore, inference (19) is a probabilistically informative version of Festino (No
P is M , Some S is M , therefore Some S is not P ) under the existential import.

Remark 6. We observe that, traditionally, the conclusions of logically valid cat-
egorical syllogisms of Figure II are neither in the form of sentence type I (some)
nor of A (every). In terms of our probability semantics, indeed, this must be the
case even if the existential import assumption p(S|(S ∨P )) > 0 is made: accord-
ing to Theorem 2, the upper the bound for the conclusion p( sP |S) is always 1;
thus, neither sentence type I (p(P |S) > 0, i.e. p( sP |S) < 1) nor sentence type A
(p(P |S) = 1, i.e. p( sP |S) = 0) can be validated.

Remark 7. We recall that p(S) = p(S∧(S∨P )) = p(S|(S∨P ))P (S∨P ). Hence,
if we assume that p(S) is positive, then p(S|(S ∨ P )) must be positive too (the
converse, however, does not hold). Therefore, the inferences (12)–(19) hold if
p(S|(S ∨P )) > 0 is replaced p(S) > 0. The constraint p(S) > 0 can be seen as a
stronger version of an existential import assumption compared to the conditional
event existential import.

5 Concluding Remarks

In this paper we observed that an existential import assumption is required for
the probabilistic validity of syllogisms of Figure II, which we expressed in terms
of a probability constraint. Then, we proved probability propagation rules for
categorical syllogisms of Figure II. We applied the probability propagation rules
to show the validity of the probabilistic versions of the traditional categorical
syllogisms of Figure II (i.e., Camestres, Camestrop, Baroco, Cesare, Cesaro,
Festino).

We note that, by setting appropriate thresholds, our semantics also allows for
generalizing the traditional syllogisms to new ones involving generalized quan-
tifiers (like interpreting Most S are P by p(P |S) " t, where t is a given—
usually context dependent—threshold like >.5). Probabilistic syllogisms are a
much more plausible rationality framework for studying categorical syllogisms
compared to the traditional syllogisms, as “truly” all- and existentially quantified
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statements are hardly ever used in commonsense contexts (even if people men-
tion words like “all”, they usually don’t mean all in a strictly universal sense).
Indeed, quantified statements are usually not falsified by one exception (while
the universal quantifier ∀ does not allow for exceptions) and quantify over more
than just at least one thing (while the existential quantifier ∃ is weak in the
sense that it is true when it holds for at least one thing).

Furthermore, as proposed in [15], the basic syllogistic sentence types can
also be interpreted as instances of defaults (i.e., (A) by S |∼ P and (E) by
S |∼ sP ) and negated defaults (i.e., (I) by S |∼/ sP and (O) by S |∼/ P ): thus,
we can also build a bridge from categorical syllogisms of Figure II to default
reasoning. Camestres, for example, has the following form in terms of defaults:
(A) P |∼ M , (E) S |∼ ĎM , and the existential import (S ∨ P ) |∼/ sS implies
(E) S |∼ sP . This version of Camestres can serve as a valid inference rule for
nonmonotonic reasoning.

We will devote future work to deepen our results and to extend our coherence-
based probability semantics to other categorical syllogisms. In particular, we plan
to further generalize categorical syllogisms by applying the theory of compounds
of conditionals under coherence (see, e.g. [16,17,22]): as shown in the context of
conditional syllogisms [18,36,37], this theory allows for managing logical opera-
tions on conditionals and iterated conditionals. Iterated conditionals can be used
for interpreting categorical syllogisms with statements like If S1 are P1, then S2

are P2 (i.e., (P2|S2)|(P1|S1)).

Acknowledgments. We thank three anonymous reviewers for their useful comments
and suggestions.
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