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Abstract. In this paper we consider, in the framework of coherence, four
different definitions of conjunction among conditional events. In each of
these definitions the conjunction is still a conditional event. We first recall
the different definitions of conjunction; then, given a coherent probability
assessment (x, y) on a family of two conditional events {A|H,B|K}, for
each conjunction (A|H)∧(B|K) we determine the (best) lower and upper
bounds for the extension z = P [(A|H)∧(B|K)]. We show that, in general,
these lower and upper bounds differ from the classical Fréchet-Hoeffding
bounds. Moreover, we recall a notion of conjunction studied in recent
papers, such that the result of conjunction of two conditional events A|H
and B|K is (not a conditional event, but) a suitable conditional random
quantity, with values in the interval [0, 1]. Then, we remark that for this
conjunction, among other properties, the Fréchet-Hoeffding bounds are
preserved.
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1 Introduction

In probability theory and in probability logic a relevant problem, largely dis-
cussed by many authors (see, e.g., [2,8,9,26]), is that of suitably defining logical
operations among conditional events. In this paper we consider four different
notions of conjunction among conditional events such that in all cases the result
of conjunction is a conditional event too: Kleene-Lukasiewicz-Heyting conjunc-
tion, Lukasiewicz conjunction, Bochvar internal conjunction, Sobocinski conjunc-
tion. For each conjunction (A|H) ∧ (B|K), given the conditional probabilities
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x = P (A|H) and y = P (B|K), we determine the (best) lower and upper bounds
for the conditional probability z = P [(A|H) ∧ (B|K)], that is, given a coherent
assessment (x, y) on the family {A|H,B|K}, we determine the lower and upper
bounds z′, z′′ such that the extension (x, y, z) on {A|H,B|K, (A|H) ∧ (B|K)},
with z = P [(A|H) ∧ (B|K)], is coherent if and only if z ∈ [z′, z′′]. Of course,
z′, z′′ ∈ [0, 1], but the extension (x, y, 0) (resp., (x, y, 1)) is coherent if only if
z′ = 0 (resp., z′′ = 1). We verify that in all cases such probability bounds do
not coincide with the classical Fréchet-Hoeffding bounds: z′ = max{x+ y−1, 0}
and z′′ = min{x, y}. In particular, we obtain z′ = 0 and z′′ = min{x, y} for the
Kleene-Lukasiewicz-Heyting conjunction and for the Lukasiewicz conjunction.
We obtain z′ = 0 and z′′ = 1 for the Bochvar internal conjunction. Finally, for
the Sobocinski conjunction we obtain z′ = max{x+y−1, 0} and z′′ = SH

0 (x, y),
where SH

0 (x, y) is the Hamacher t-conorm with parameter λ = 0. Then, we
examine a notion of conjunction introduced in some recent papers, where the
result of conjunction in general is not a conditional event, but a conditional
random quantity. We remark that this notion of conjunction, differently from
the previous of notions of conjunction, satisfy many properties. In particular
the classical Fréchet-Hoeffding bounds are satisfied. We also recall a dual notion
of disjunction by showing that within this approach the prevision sum rule is
satisfied, that is P[(A|H) ∨ (B|K)] = P(A|H) + P(B|K) − P[(A|H) ∧ (B|K)].

2 Preliminary Notions and Results

An event A is a (non ambiguous) logical proposition which describes an uncertain
fact; hence A is a two-valued logical entity which can be true (T ), or false (F ).
The indicator of A, denoted by the same symbol, is a two-valued numerical
quantity which is 1, or 0, according to whether the event A is true, or false,
respectively. The sure event is denoted by Ω and the impossible event is denoted
by ∅. Moreover, we denote by A ∧ B the logical conjunction and by A ∨ B the
logical disjunction. In many cases the conjunction between A and B is simple
denoted as the product AB. The negation of an event A is denoted by A. Given
two events A and B, the inclusion relation between A and B, that is AB = ∅,
is denoted by A ⊆ B. We recall that n events are logically independent when
the number of atoms, or constituents, generated by them is 2n. In case of some
logical dependencies among the events, the number of atoms is less than 2n.
Given two events A and B, with A ̸= ∅, the conditional event B|A is looked
at as a three-valued logical entity which is true (T ), or false (F), or void (V ),
according to whether AB is true, or AB is true, or A is true.

Coherent Conditional Probability Assessments. We recall that, using the bet-
ting scheme of de Finetti [12], if you assess P (B|A) = p, then you agree to
pay an amount p, by receiving 1, or 0, or p, according to whether AB is true,
or AB is true, or A is true (bet called off). Then, the random gain associ-
ated with the assessment P (B|A) = p is G = sH(E − p), where s is a non
zero real number. More in general, let be given a real function P : F → R ,
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where K is an arbitrary family of conditional events. Given any subfam-
ily F = {E1|H1, . . . , En|Hn} ⊆ K, the restriction of P to F is the vector
Pn = (p1, . . . , pn), where pi = P (Ei|Hi) , i = 1, . . . , n. We denote by Hn

the disjunction H1 ∨ · · · ∨ Hn. As EiHi ∨ EiHi ∨ Hi = Ω , i = 1, . . . , n, by
expanding the expression

∧n
i=1(EiHi ∨ EiHi ∨ Hi), we can represent Ω as the

disjunction of 3n logical conjunctions, some of which may be impossible. The
remaining ones are the atoms, or constituents, generated by the family F and,
of course, are a partition of Ω. We denote by C1, . . . , Cm the constituents con-
tained in Hn and (if Hn ̸= Ω) by C0 the remaining constituent Hn = H1 · · ·Hn,
so that

Hn = C1 ∨ · · · ∨ Cm , Ω = Hn ∨ Hn = C0 ∨ C1 ∨ · · · ∨ Cm , m+ 1 ≤ 3n .

In the betting metaphor, G =
∑n

i=1 siHi(Ei − pi) is the random gain associated
with (F ,P), where s1, . . . , sn are n arbitrary real numbers, which is the difference
between the amount that you receive,

∑n
i=1 si(EiHi + piHi), and the amount

that you pay,
∑n

i=1 sipi. Let gh be the value of G when Ch is true; of course
g0 = 0. Denoting by GHn the set of possible values of G restricted to Hn, it is
GHn = {g1, . . . , gm}. Then, we have

Definition 1. The function P defined on an arbitrary family of condi-
tional events K is coherent if and only if, for every finite subfamily F =
{E1|H1, . . . , En|Hn} of K, one has: min GHn ≤ 0 ≤ max GHn .

As shown by Definition 1, a probability assessment is coherent if and only if, in
any finite combination of n bets, it may not happen that the values g1, . . . , gm
are all positive, or all negative (no Dutch Book).

Given any integer n we set Jn = {1, 2, . . . , n}; for each h ∈ Jm with the
constituent Ch we associate a point Qh = (qh1, . . . , qhn), where qhj = 1, or 0, or
pj , according to whether Ch ⊆ EjHj , or Ch ⊆ EjHj , or Ch ⊆ Hj .

Denoting by I the convex hull of Q1, . . . , Qm, by a suitable alternative the-
orem [13, Theorem 2.9], the condition P ∈ I is equivalent to the condition
minGHn ≤ 0 ≤ maxGHn given in Definition 1 (see, e.g., [17,21]). Moreover, the
condition P ∈ I amounts to the solvability of the following system (Σ) in the
unknowns λ1, . . . ,λm

(Σ) :
∑m

h=1 qhjλh = pj , j ∈ Jn ;
∑m

h=1 λh = 1 ; λh ≥ 0 , h ∈ Jm .
(1)

We say that system (Σ) is associated with the pair (F ,P). Hence, the following
result provides a characterization of the notion of coherence given in Definition 1
([14, Theorem 4.4], see also [15,20,21])

Theorem 1. The function P defined on an arbitrary family of conditional
events K is coherent if and only if, for every finite subfamily F =
{E1|H1, . . . , En|Hn} of K, denoting by P the vector (p1, . . . , pn), where pj =
P (Ej |Hj), j = 1, 2, . . . , n, the system (Σ) associated with the pair (F ,P) is
solvable.
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Coherence Checking. We recall now some results on the coherence checking
of a probability assessment on a finite family of conditional events. Given a
probability assessment P = (p1, . . . , pn) on F = {E1|H1, . . . , En|Hn}, let S be
the set of solutions Λ = (λ1, . . . ,λm) of the system (Σ). Then, assuming S ̸= ∅,
we define

Φj(Λ) = Φj(λ1, . . . ,λm) =
∑

r:Cr⊆Hj
λr , j ∈ Jn ; Λ ∈ S ;

Mj = maxΛ∈S Φj(Λ) , j ∈ Jn ; I0 = {j : Mj = 0} .

If S ̸= ∅, then S is a closed bounded set and the maximum Mj of the
linear function Φj(Λ) =

∑
r:Cr⊆Hj

λr there exists for every j ∈ Jn. Assuming P
coherent, each solution Λ = (λ1, . . . ,λm) of system (Σ) is a coherent extension
of the assessment P on F to the family {C1|Hn, C2|Hn, . . . , Cm|Hn}. Then, for
each solution Λ of system (Σ) the quantity Φj(Λ) is the conditional probability
P (Hj |Hn). Moreover, the quantity Mj is the upper probability P

′′
(Hj |Hn) over

all the solutions Λ of system (Σ). Of course, j ∈ I0 if and only if P
′′
(Hj |Hn) = 0.

Notice that I0 is a strict subset of Jn. If I0 is nonempty, we set F0 = {Ei|Hi ∈
F : i ∈ I0} and P0 = (P (Ei|Hi), i ∈ I0). We say that the pair (F0,P0) is
associated with I0. Then, we have [16, Theorem 3.3].

Theorem 2. The assessment P on F is coherent if and only if the following
conditions are satisfied: (i) the system (Σ) associated with the pair (F ,P) is
solvable; (ii) if I0 ̸= ∅, then P0 is coherent.

By Theorem 2, the following algorithm checks in a finite number of steps the
coherence of the probability assessment P on a finite family of conditional
events F .

Algorithm 1. Let be given the pair (F ,P).

1. Construct the system (Σ) associated with the pair (F ,P) and check its solv-
ability;

2. If the system (Σ) is not solvable then P is not coherent and the procedure
stops, otherwise compute the set I0;

3. If I0 = ∅ then P is coherent and the procedure stops, otherwise set (F ,P) =
(F0, P0) and go to step 1.

In the next definition we recall the notion of inclusion relation between two
conditional events (see, e.g., [25]).

Definition 2. Given two conditional events A|H and B|K we define that A|H
logically implies B|K, which we denote by A|H ⊆ B|K, if and only if AH is
true implies BK is true and BK is true implies AH is true; i.e., AH ⊆ BK
and BK ⊆ AH.

By coherence, it holds that (see, e.g., [19, Theorem 1]) P (A|H) ≤ P (B|K) when
A|H ⊆ B|K. It can be also verified that [21, Remark 3]

A|H ⊆ B|K ⇐⇒ AHBK = H BK = AHK = ∅ . (2)
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We recall that the notion of implication given in [11] introduces a suitable condi-
tional event associated with A|H and B|K (see also [27,28]). Between the notions
of implication and inclusion relation there exists a relationship: as shown by (2),
when the inclusion relation holds the implication between A|H and B|K is void
or true. It is void if HK is true; it is true in all the other cases.

3 Computation of Lower and Upper Bounds for Different
Notions of the Conjunction

In this section we examine four different notions of conjunction between three val-
ued events ([4], see also [5]), named in our approach conditional events: Kleene-
Lukasiewicz-Heyting conjunction (∧K), Lukasiewicz conjunction (∧L), Bochvar
internal conjunction, also known as Kleene weak conjunction (∧B), and Sobocin-
ski conjunction (∧S). In all these definitions the conjunction of two conditional
events is still a conditional event. We observe that, differently from other def-
initions of conjunctions, this four logical operations are all commutative and
associative. The truth values of the four conjunctions are given in Table 1. We
recall that a conditional event A|H, where A,H are two events with H ̸= ∅, can
be looked as a three valued random quantity A|H = AH+xH ∈ {1, 0, x}, where
x = P (A|H). Let A,H,B,K be logical independent events, with H ̸= ∅,K ̸= ∅.
Assuming that P (A|H) = x, P (B|K) = y and P [(A|H) ∧ (B|K)] = z the table
of logical values for the different notions of conjunction are given in Table 2. We
list below in an explicit way the four conjunctions as conditional events.

1. (A|H) ∧K (B|K) = AHBK|(HK ∨ AH ∨ BK);
2. (A|H) ∧L (B|K) = AHBK|(HK ∨ AB ∨ AK ∨ BH ∨ HK);
3. (A|H) ∧B (B|K) = AHBK|HK;
4. (A|H) ∧S (B|K) = (AH ∨ H) ∧ (BK ∨ K)|(H ∨ K).

Table 1. Truth values of the conjunctions. The values T, F, V denote True, False, and
Void, respectively.

Ch A|H B|K ∧K ∧L ∧B ∧S

C1 AHBK T T T T T T

C2 AHBK T F F F F F

C3 AHK T V V V V T

C4 AHBK F T F F F F

C5 AHBK F F F F F F

C6 AH K F V F F V F

C7 HBK V T V V V T

C8 H BK V F F F V F

C0 H K V V V F V V
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Table 2. Numerical values of the conjunctions. The values x, y, z denote P (A|H),
P (B|K) and P [(A|H) ∧ (B|K)], respectively.

Ch A|H B|K ∧K ∧L ∧B ∧S

C1 AHBK 1 1 1 1 1 1

C2 AHBK 1 0 0 0 0 0

C3 AHK 1 y z z z 1

C4 AHBK 0 1 0 0 0 0

C5 AHBK 0 0 0 0 0 0

C6 AH K 0 y 0 0 z 0

C7 HBK x 1 z z z 1

C8 H BK x 0 0 0 z 0

C0 H K x y z 0 z z

3.1 The Kleene-Lukasiewicz-Heyting Conjunction

The Kleene-Lukasiewicz-Heyting conjunction is represented in Table 1 by the
symbol ∧K . This notion coincides with the logical product between tri-events
given in [11] (see also [27]). As shown in Table 2, based on the betting scheme the
conjunction of two conditional events A|H and B|K in our approach coincides
with the random quantity

(A|H) ∧K (B|K) =

⎧
⎨

⎩

1, if AHBK is true,
0, if AH ∨ BK is true,
z, if AHK ∨ HBK ∨ HK is true,

(3)

where z = P (A|H ∧K B|K). Then,

(A|H) ∧K (B|K) = 1 ·AHBK + z(HBK ∨ AHK ∨ HK) . (4)

Notice that the quantity z = P[(A|H) ∧K (B|K)] represents the value that you
assess, with the proviso that, you will pay the amount sz by receiving the random
quantity s[(A|H)∧K (B|K)]. In particular, if s = 1, then you agree to pay z with
the proviso that you will receive: 1, if both conditional events are true; 0, if at
least one of the conditional events is false; z, otherwise. Based on (3) and (4),
the Kleene-Lukasiewicz-Heyting conjunction is the following conditional event

(A|H) ∧K (B|K) = AHBK|(AHBK ∨ AH ∨ BK). (5)

Remark 1. We observe that (A|H) ∧K (B|K) ⊆ A|H and (A|H) ∧K (B|K) ⊆
B|K. Then, coherence requires that

P [(A|H) ∧K (B|K)] ≤ min{P (A|H), P (B|K)}.
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Moreover, Table 1 shows that (A|H)∧K (B|K) and A|H only differ when AHBK
is true, or H BK is true, or AHK is true. Then, from (2) and Table 1 we recover
the definition of inclusion relation in the form given in [25], that is

A|H ⊆ B|K ⇐⇒ (A|H) ∧K (B|K) = A|H.

Remark 2. We recall that given two conditional events {A|H,B|K}, with
A,H,B,K logically independent, and with H ̸= ∅,K ̸= ∅, the set of all coherent
assessments (x, y) on {A|H,B|K} is the unit square [0, 1]2.

In the next result we give the values of z = P [(A|H) ∧K (B|K)] which are
coherent extensions of a probability assessment (x, y) on {A|H,B|K}.
Theorem 3. Given any coherent assessment (x, y) on {A|H,B|K}, with
A,H,B,K logically independent, and with H ̸= ∅,K ̸= ∅, the probability assess-
ment z = P [(A|H) ∧K (B|K)] is a coherent extension if and only if z ∈ [z′, z′′],
where z′ = 0 and z′′ = min{x, y}.

Proof. We recall that, by Remark 2, any assessment (x, y) ∈ [0, 1]2 is coher-
ent. The constituents Ch’s and the points Qh’s associated with (F ,P), where
F = {A|H, B|K, (A|H) ∧K (B|K)}, P = (x, y, z), are given in Table 3. The
constituents Ch’s contained in H3 = H∨K are C1, . . . , C8. We recall that coher-
ence of the probability assessment P = (x, y, z) on F requires that the condition
P ∈ I be satisfied, where I is the convex hull of Q1, . . . , Q8. This amounts to
the solvability of the following system

(Σ) P =
∑8

h=1 λhQh,
∑8

h=1 λh = 1, λh ≥ 0, h = 1, . . . , 8;

that is
{

λ1 + λ2 + λ3 + xλ7 + xλ8 = x, λ1 + yλ3 + λ4 + yλ6 + λ7 = y
λ1 + zλ3 + zλ7 = z,

∑8
h=1 λh = 1, λh ≥ 0, h = 1, . . . , 8 .

We first prove that z′ = 0, by verifying that the assessment (x, y, 0) is coherent
for any pair (x, y) ∈ [0, 1]2. We distinguish the following cases: (i) x < 1, y < 1;
(ii) x = 1, y < 1; (iii) x < 1, y = 1 ; (iv) x = y = 1.
Case (i). We observe that (x, y, 0) ∈ I. Indeed, the system (Σ) is solvable, with
a solution given by

λ1= 0,λ2 = 0,λ3 = x(1−y)
1−xy ,λ4 = 0,λ5 = (1−x)(1−y)

1−xy ,λ6 = 0,λ7 = y(1−x)
1−xy ,λ8 = 0,

that is

(x, y, 0) =
x(1 − y)
1 − xy

Q3 +
(1 − x)(1 − y)

1 − xy
Q5 +

y(1 − x)
1 − xy

Q7.

Moreover, this solution is such that λ5 = (1−x)(1−y)
1−xy > 0, then

∑
h:Ch⊆H λh = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = x(1−y)

1−xy + (1−x)(1−y)
1−xy = 1−y

1−xy > 0,
∑

h:Ch⊆K λh = λ1 + λ2 + λ4 + λ5 + λ7 + λ8 = (1−x)(1−y)
1−xy + y(1−x)

1−xy = 1−x
1−xy > 0,

∑
h:Ch⊆AHBK∨AH∨BK λh= λ1 + λ2 + λ4 + λ5 + λ6 + λ8 = λ5= (1−x)(1−y)

1−xy > 0.
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Table 3. Constituents Ch’s and points Qh’s associated with the prevision assessment
P = (x, y, z) on F = {A|H,B|K, (A|H) ∧K (B|K)}.

Ch Qh

C1 AHBK (1,1,1) Q1

C2 AHBK (1, 0, 0) Q2

C3 AHK (1, y, z) Q3

C4 AHBK (0, 1, 0) Q4

C5 AHBK (0, 0, 0) Q5

C6 AHK (0, y, 0) Q6

C7 HBK (x, 1, z) Q7

C8 H BK (x, 0, 0) Q8

C0 H K (x, y, z) Q0 = P

Thus, I0 = ∅ and from Theorem 2 it follows that (x, y, 0) is coherent.

Case (ii). It holds that P = (1, y, 0) = 1
2 (1, y, 0) +

y
2 (1, 1, 0) +

(1−y)
2 (1, 0, 0) =

1
2Q3 + y

2Q7 + 1−y
2 Q8, therefore the vector (0, 0, 1

2 , 0, 0, 0,
y
2 ,

1−y
2 ) is a solution

of (Σ) such that λ8 = 1 − y > 0,
∑

h:Ch⊆H λh = λ1 + λ2 + λ3 + λ4 + λ5 +
λ6 = 1

2 > 0,
∑

h:Ch⊆K λh = λ1 + λ2 + λ4 + λ5 + λ7 + λ8 = 1
2 > 0, and∑

h:Ch⊆AHBK∨AH∨BK λh = λ1+λ2+λ4+λ5+λ6+λ8 = 1−y
2 > 0. Then I0 = ∅

and from Theorem 2 it follows that (x, y, 0) is coherent.

Case (iii). The analysis is similar to the case (ii).

Case (iv). The system (Σ) becomes

λ1= 0, λ2 + λ3 + λ7 + λ8 =1, λ3 + λ4 + λ6 + λ7 =1,
∑8

h=1 λh = 1, λh ≥ 0, ∀h,

or equivalently: λ3+λ7 = 1, λ3 ≥ 0, λ7 ≥ 0,λ1 = λ2 = λ4 = λ5 = λ6 = λ8 = 0.
Then, the set S of solutions of (Σ) is S = {(0, 0,λ, 0, 0, 0, 1 − λ, 0) : 0 ≤ λ ≤ 1}.
We observe that

∑
h:Ch⊆H λh = λ1+λ2+λ3+λ4+λ5+λ6 = λ,

∑
h:Ch⊆K λh =

λ1 + λ2 + λ4 + λ5 + λ7 + λ8 = 1 − λ, and
∑

h:Ch⊆AHBK∨AH∨BK λh = λ1 +
λ2 + λ4 + λ5 + λ6 + λ8 = 0. For 0 < λ < 1 it holds that

∑
h:Ch⊆H λh > 0 and∑

h:Ch⊆K λk > 0. Then, I0 = {3} and by Algorithm 1, from coherence of the
assessment P (AHBK|(AHBK ∨ AH ∨ BK)) = z = 0, the assessment (1, 1, 0)
is coherent too.

Thus, (x, y, 0) is coherent for every (x, y) ∈ [0, 1] and hence z′ = 0.
Concerning the upper bound, by Remark 1 coherence requires that z ≤

min{x, y}. We prove that z′′ = min{x, y}, by verifying that the assessment
(x, y,min{x, y}) is coherent for every (x, y) ∈ [0, 1]2. We first show that the
point (x, y,min{x, y}) is always a linear convex combinations of a subset of the
set {Q1, Q2, Q4, Q5}. By assuming min{x, y} = x, we have

(x, y, x) = xQ1+(y−x)Q4+(1−y)Q5 = x(1, 1, 1)+(y−x)(0, 1, 0)+(1−y)(0, 0, 0).

Then (x, y, x) ∈ I and the system (Σ) is solvable, with λ1 = x,λ4 = y − x,λ5 =
1 − y,λ2 = λ3 = λ6 = λ7 = λ8 = 0. Moreover,

∑
h:Ch⊆H λh = λ1 + λ2 + λ3 +
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λ4 + λ5 + λ6 = 1 > 0,
∑

h:Ch⊆K λh = λ1 + λ2 + λ4 + λ5 + λ7 + λ8 = 1 > 0,
and

∑
h:Ch⊆AHBK∨AH∨BK λh = λ1 + λ2 + λ4 + λ5 + λ6 + λ8 = 1 > 0. Therefore

I0 = ∅ and (x, y,min{x, y}) is coherent for every (x, y) ∈ [0, 1]2 such that x ≤ y.
By a similar reasoning (x, y,min{x, y}) is coherent for every (x, y) ∈ [0, 1]2 such
that y < x.

Thus (x, y,min{x, y}) is coherent for every (x, y) ∈ [0, 1]2 and hence z′′ =
min{x, y}. ⊓/

We recall that in [26, p. 161] lower and upper bounds for (A|H)∧K (B|K) have
been obtained based on different premises.

3.2 The Lukasiewicz Conjunction

The Lukasiewicz conjunction is represented in Table 1 by the symbol ∧L. As
shown in Table 2, based on the betting scheme the conjunction of two conditional
events A|H and B|K in our approach coincides with the random quantity

(A|H) ∧L (B|K) =

⎧
⎨

⎩

1, if AHBK is true,
0, if AH ∨ BK ∨ HK is true,
z, if AHK ∨ HBK is true,

(6)

where z = P (A|H ∧L B|K). Then,

(A|H) ∧L (B|K) = 1 ·AHBK + z(AHK ∨ HBK) . (7)

Based on (6) and (7), by observing that

AHK ∨ HBK =
= AHBK ∨ AHBK ∨ HK ∨ H BK ∨ AHBK ∨ AHK ∨ AHBK =
= HK ∨ AB ∨ AK ∨ BH ∨ HK,

the Lukasiewicz conjunction is the following conditional event

(A|H) ∧L (B|K) = AHBK|(HK ∨ AB ∨ AK ∨ BH ∨ HK). (8)

As we can see from (3) and (6) (see also Table 1), the conjunctions (A|H) ∧K

(B|K) and (A|H) ∧L (B|K) only differ when HK is true; indeed in this case
(A|H)∧K (B|K) = z, where z = P [(A|H)∧K (B|K)], and (A|H)∧K (B|K) = 0.
Then, by observing that z ≥ 0, it holds that

(A|H) ∧K (B|K) ≥ (A|H) ∧L (B|K) (9)

and hence
P [(A|H) ∧K (B|K)] ≥ P [(A|H) ∧L (B|K)]. (10)

On the other hand, as it can be verified, it holds that (A|H)∧L(B|K) ⊆ (A|H)∧K

(B|K), from which it follows (10). Concerning the lower and upper bounds on
(A|H) ∧L (B|K), we have
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Theorem 4. Given any coherent assessment (x, y) on {A|H,B|K}, with
A,H,B,K logically independent, and with H ̸= ∅,K ̸= ∅, the probability assess-
ment z = P [(A|H) ∧L (B|K)] is a coherent extension if and only if z ∈ [z′, z′′],
where z′ = 0 and z′′ = min{x, y}.
Proof. By Theorem 3 the lower bound on P [(A|H) ∧K (B|K)] is 0; then, from
(10) the lower bound z′ on P [(A|H) ∧L (B|K)] is still 0. Moreover, from (10)
it also follows that z′′ ≤ min{x, y}. We will prove that z′′ = min{x, y}. The
constituents Ch’s and the points Qh’s associated with (F ,P), where F =
{A|H, B|K, (A|H) ∧L (B|K)}, P = (x, y, z), are given in Table 4. We observe
that H3 = H ∨K ∨HK ∨AB ∨AK ∨BH ∨HK = Ω. Then, the constituents
Ch’s contained in H3 = Ω are C1, . . . , C9, that is all constituents C1, . . . , C8

associated with the conjunction ∧K plus the constituent C9 = HK. Then, as
shown in Table 4, with respect to ∧K the set of points Qh’s contains the further
point Q9 = (x, y, 0). In order to prove that the assessment (x, y,min{x, y}) is
coherent, it is enough to repeat the same reasoning used in the proof of Theorem
3 by only considering the points Q1, . . . , Q8 (this amounts to set λ9 = 0 in the
current system (Σ)). ⊓/

Table 4. Constituents Ch’s and points Qh’s associated with the prevision assessment
P = (x, y, z) on F = {A|H,B|K, (A|H) ∧L (B|K)}.

Ch Qh

C1 AHBK (1, 1, 1) Q1

C2 AHBK (1, 0, 0) Q2

C3 AHK (1, y, z) Q3

C4 AHBK (0, 1, 0) Q4

C5 AHBK (0, 0, 0) Q5

C6 AHK (0, y, 0) Q6

C7 HBK (x, 1, z) Q7

C8 H BK (x, 0, 0) Q8

C9 H K (x, y, 0) Q9

3.3 The Bochvar Internal Conjunction

The Bochvar internal conjunction [3] is represented in Table 1 by the symbol
∧B . As shown in Table 2, based on the betting scheme the conjunction of two
conditional events A|H and B|K in our approach coincides with the random
quantity

(A|H) ∧B (B|K) =

⎧
⎨

⎩

1, if AHBK is true,
0, if AHBK ∨ AHBK ∨ AHBK is true,
z, if AHK ∨ HBK ∨ HK ∨ AHK ∨ H BK is true,

(11)
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where z = P (A|H ∧B B|K). We observe that AHK ∨ HBK ∨ HK ∨ AHK ∨
H BK = H ∨ K, then

(A|H) ∧B (B|K) =

⎧
⎨

⎩

1, if AHBK is true,
0, if AHBK ∨ AHBK ∨ AHBK is true,
z, if H ∨ K is true.

Thus,
(A|H) ∧B (B|K) = 1 ·AHBK + z(H ∨ K) . (12)

Based on (11) and (12), the Bochvar internal conjunction is the following con-
ditional event

(A|H) ∧B (B|K) = AHBK|HK = AB|HK . (13)

We have

Theorem 5. Given any coherent assessment (x, y) on {A|H,B|K}, with
A,H,B,K logically independent, and with H ̸= ∅,K ̸= ∅, the probability assess-
ment z = P [(A|H) ∧B (B|K)] is a coherent extension if and only if z ∈ [z′, z′′],
where z′ = 0 and z′′ = 1.

Proof. We recall that every (x, y) ∈ [0, 1]2 is a coherent assessment on
{A|H,B|K}. We will prove that every assessment (x, y, z) ∈ [0, 1]3 on
{A|H,B|K, (A|H)∧B (B|K)} is coherent. The constituents Ch’s and the points
Qh’s associated with (F ,P), where F = {A|H, B|K, (A|H) ∧B (B|K)}, P =
(x, y, z), are given in Table 5. We observe that P belongs to the segment with
vertices Q3, Q6; indeed (x, y, z) = x(1, y, z) + (1 − x)(0, y, z). P also belongs to
the segment with vertices Q7, Q8; indeed (x, y, z) = y(x, 1, z) + (1 − y)(x, 0, z).
Then,

(x, y, z) =
x

2
(1, y, z) +

1 − x

2
(0, y, z) +

y

2
(x, 1, z) +

1 − y

2
(x, 0, z),

that is the vector (λ1, . . . ,λ8) = (0, 0, x
2 , 0, 0,

1−x
2 , y

2 ,
1−y
2 ) is a solution of system

(Σ), with
∑

h:Ch⊆H λh = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1
2 > 0,

∑
h:Ch⊆K λh =

λ1 + λ2 + λ4 + λ5 + λ7 + λ8 = 1
2 > 0, and

∑
h:Ch⊆HK λh = λ1 + λ2 + λ4 +

λ5 = 0. Therefore I0 ⊆ {3}. If I0 = ∅, then from Theorem 2 it follows that
(x, y, z) ∈ [0, 1]3 is coherent. If I0 = {3} from coherence of the assessment
P [(A|H) ∧B (B|K)] = z ∈ [0, 1] and by Algorithm 1 it follows the coherence of
the assessment (x, y, z) ∈ [0, 1]3. Thus, for every given (x, y) ∈ [0, 1]2 the lower
and upper bounds on the extension z = P [(A|H) ∧B (B|K)] are z′ = 0 and
z′′ = 1, respectively. ⊓/

Remark 3. We observe that (A|HK) ∧ (B|HK) = AB|HK, so that P (A|HK),
P (B|HK), and P (AB|HK) satisfy the Fréchet-Hoeffding bounds, that is

max{P (A|HK)+P (B|HK)−1, 0} ≤ P (AB|HK) ≤ min{P (A|HK), P (B|HK)}.
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Table 5. Constituents Ch’s and points Qh’s associated with the prevision assessment
P = (x, y, z) on F = {A|H,B|K, (A|H) ∧B (B|K)}.

Ch Qh

C1 AHBK (1, 1, 1) Q1

C2 AHBK (1, 0, 0) Q2

C3 AHK (1, y, z) Q3

C4 AHBK (0, 1, 0) Q4

C5 AHBK (0, 0, 0) Q5

C6 AHK (0, y, z) Q6

C7 HBK (x, 1, z) Q7

C8 H BK (x, 0, z) Q8

C0 H K (x, y, z) Q0 = P

Then, by assuming P (A|H) = P (A|HK) = x and P (B|K) = P (B|HK) = y,
that is by requiring suitable conditional independence hypotheses, it holds that
z = P (AB|HK) is coherent if and only if

max{P (A|H) + P (B|K) − 1, 0} ≤ P (AB|HK) ≤ min{P (A|H), P (B|K)}.

A discussion on this aspect related with conditional independence is given in [7],
where a general definition of intersection and union between two fuzzy subsets
is introduced in the framework of conditional probabilities (see also [6]).

3.4 The Sobocinski Conjunction or Quasi Conjunction

The Sobocinski conjunction or quasi conjunction [1] is represented in Table 1 by
the symbol ∧S . We recall that the link between conditional events and Sobocinski
conjunction was studied in [10]. As shown in Table 2, the conjunction of A|H
and B|K is the following conditional event

(A|H) ∧S (B|K) = (AH ∨ H) ∧ (BK ∨ K)|(H ∨ K) .

Based on the betting scheme the conjunction of two conditional events A|H and
B|K in our approach coincides with the random quantity

(A|H) ∧S (B|K) =

⎧
⎨

⎩

1, if AHBK ∨ AHK ∨ BKH is true,
0, if AH ∨ BK is true,
z, if HK is true,

(14)

From (14), the conjunction (A|H) ∧S (B|K) is the following random quantity

(A|H) ∧S (B|K) = 1 ·AHBK +AHK +HBK + zH K . (15)

We recall the following result (see, e.g., [18,21])
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Theorem 6. Given any coherent assessment (x, y) on {A|H,B|K}, with
A,H,B,K logically independent, and with H ̸= ∅,K ̸= ∅, the probability assess-
ment z = P [(A|H) ∧S (B|K)] is a coherent extension if and only if z ∈ [z′, z′′],

where z′ = max{x+ y − 1, 0} and z′′ =
{ x+y−2xy

1−xy , (x, y) ̸= (1, 1),
1, (x, y) = (1, 1).

We recall that z′′ = SH
0 (x, y), where SH

0 (x, y) is the Hamacher t-conorm with
parameter λ = 0. It can be easily verified that

SH
0 (x, y) ≥ min{x, y}, ∀(x, y) ∈ [0, 1]2. (16)

4 Conjunction as a Conditional Random Quantity

We recall that the extension z = P (AB) of the assessment (x, y) on {A,B},
with A,B logically independent, is coherent if and only if z satisfies the Fréchet-
Hoeffding bounds, that is max{x+y−1, 0} ≤ z ≤ min{x, y}. As we have seen in
the previous sections, no one of the given definitions of conjunction between two
conditional events preserves both of these lower and upper bounds. A definition
of conjunction which satisfies the Fréchet-Hoeffding bounds has been given in
recent papers (see, e.g., [22,23]). Based on this definition the conjunction of two
conditional events A|H and B|K, with P (A|H) = x and P (B|K) = y, is the
following conditional random quantity

(A|H)∧ (B|K) = min{A|H,B|K}|(H ∨K) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if AHBK is true,
0, if AH ∨ BK is true,
x, if HBK is true,
y, if AHK is true,
z, if HK is true,

(17)

where z is the prevision P[(A|H)∧ (B|K)] of (A|H)∧ (B|K). This notion of con-
junction satisfies the Fréchet-Hoeffding bounds [22, Theorem 7], that is: given
any coherent assessment (x, y) on {A|H,B|K}, with A,H,B, K logically inde-
pendent, H ̸= ∅,K ̸= ∅, the extension z = P[(A|H) ∧ (B|K)] is coherent if and
only if max{x + y − 1, 0} = z′ ≤ z ≤ z′′ = min{x, y}. In case of some log-
ical dependencies among the events A,H,B,K the interval [z′, z′′] of coherent
extensions may be smaller and/or the conjunction may reduce to a conditional
event.

For instance, the conjunction (A|B)∧ (B|A) reduces to the conditional event
AB|(A∨B) [29, Theorem 7]. The disjunction of A|H and B|K is defined as the
following conditional random quantity

(A|H)∨ (B|K) = max{A|H,B|K}|(H ∨K) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if AH ∨ BK is true,
0, if AHBK is true,
x, if H BK is true,
y, if AHK is true,
w, if HK is true,

(18)
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where w = P[(A|H) ∨ (B|K)]. Given any coherent assessment (x, y) on
{A|H,B|K}, with A,H,B, K logically independent, H ̸= ∅,K ̸= ∅, the exten-
sion w = P[(A|H) ∨ (B|K)] is coherent if and only if max{x, y} = w′′ ≤ w ≤
w′′ = min{x + y, 1}; that is the classical lower and upper bound for disjunction
still hold. Other properties which are satisfied by these notions are the following
ones:

– (A|H) ∧ (B|K) = (B|K) ∧ (A|H) and (A|H) ∨ (B|K) = (B|K) ∨ (A|H);

– (A|H) ∧ (B|K) ≤ A|H and (A|H) ∧ (B|K) ≤ B|K;

– (A|H) ∧ (A|H) = (A|H) ∨ (A|H) = A|H;

– A|H ⊆ B|K ⇐⇒ (A|H) ∧ (B|K) = A|H and (A|H) ∨ (B|K) = B|K;

– P (A|H) = P (B|K) = 1 ⇐⇒ P[(A|H) ∧ (B|K)] = 1;

– (A|H) ∧ (B|K) ≤ (A|H) ∧S (B|K), with (A|H) ∧ (B|K) = (A|H) ∧S (B|K)
when x = y = 1.

Definitions (17) and (18) have been generalized to the case of n conditional
events in [23] (see also [24]), where it has been shown the validity of the asso-
ciative properties. Moreover, based on a suitable definition of the negation,
it has been shown that De Morgan’s Laws hold and that (A|H) ∨ (B|K) =
(A|H) + (B|K) − (A|H) ∧ (B|K), from which it follows the prevision sum rule:
P[(A|H) ∨ (B|K)] = P(A|H) + P(B|K) − P[(A|H) ∧ (B|K)].

Remark 4. Notice that, from Remark 1, Definitions 3 and 17, it follows that
(A|H)∧K (B|K) ≤ (A|H)∧ (B|K). Then, it is not surprising that, given (x, y),
the lower bound on (A|H) ∧K (B|K) (equal to 0) is less than or equal to the
lower bound on (A|H)∧ (B|K), which is max{x+ y − 1, 0}. A similar comment
holds for the Lukasiewicz conjunction, because from (9) it follows that (A|H)∧L

(B|K) ≤ (A|H)∧(B|K). Moreover, as shown in Table 2, in general the inequality
(A|H)∧B(B|K) ≤ min{A|H,B|K} is not satisfied. Then, it is not surprising that
the upper bound on P [(A|H) ∧B (B|K)] is greater than or equal to min{x, y};
indeed it is equal to 1. Concerning the lower bound, the inequality (A|H) ∧B

(B|K) ≥ (A|H)∧(B|K) in general is not satisfied. Then, it is not surprising that
the lower bound on P [(A|H)∧B (B|K)] is less than or equal to max{x+y−1, 0};
indeed it is equal to 0. Finally, as (A|H) ∧ (B|K) ≤ (A|H) ∧S (B|K), it is not
surprising that the upper bound on P [(A|H)∧S (B|K)] is greater than or equal
to min{x, y}; indeed it is SH

0 (x, y) (see formula 16).

5 Conclusions

In this paper we examined four different notions of conjunction among condi-
tional events given in literature such that the result of conjunction is still a
conditional event. For each conjunction (A|H) ∧ (B|K), given the conditional
probabilities x = P (A|H) and y = P (B|K), we have determined the lower
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and upper bounds for the conditional probability z = P [(A|H) ∧ (B|K)]. We
have verified that in all cases such probability bounds do not coincide with the
classical Fréchet-Hoeffding bounds. Moreover, we examined a notion of conjunc-
tion introduced in some recent papers, where the result of conjunction is (not a
conditional event, but) a conditional random quantity. With this notion of con-
junction, among other properties, the Fréchet-Hoeffding bounds are satisfied.
Further work should concerns the generalization of the results concerning lower
and upper bounds for the different definitions of conjunction of n conditional
events. A similar study should be made for the notions of disjunction.
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