
Probabilistic entailment and iterated conditionals

Angelo Gilio∗

Department SBAI, University of Rome “La Sapienza”, Italy
angelo.gilio1948@gmail.com

Niki Pfeifer
Department of Philosophy, University of Regensburg, Germany

niki.pfeifer@ur.de

Giuseppe Sanfilippo
Department of Mathematics and Computer Science,

University of Palermo, Italy
giuseppe.sanfilippo@unipa.it

Abstract

In this paper we exploit the notions of conjoined and iterated conditionals. These notions
are defined, in the setting of coherence, by means of suitable conditional random quantities
with values in the interval r0, 1s. We examine the iterated conditional pB|Kq|pA|Hq, by
showing that A|H p-entails B|K if and only if pB|Kq|pA|Hq “ 1. Then, we show that a
(p-consistent) family F “ tE1|H1, E2|H2u p-entails a conditional event E3|H3 if and only
if E3|H3 “ 1, or pE3|H3q|QCpSq “ 1 for some nonempty subset S of F , where QCpSq is
the quasi conjunction of the conditional events in S. We also examine the inference rules
And, Cut, Cautious Monotonicity, and Or of System P, and other well known inference rules
(Modus Ponens, Modus Tollens, and Bayes). Furthermore, we show that QCpFq|CpFq “ 1,
where CpFq is the conjunction of the two conditional events in F . We characterize p-
entailment by showing that F p-entails E3|H3 if and only if pE3|H3q|CpFq “ 1. Finally, we
examine Denial of the antecedent, Affirmation of the consequent, and Transitivity where the
p-entailment of E3|H3 from F does not hold, so that pE3|H3q|CpFq ‰ 1.

1 Introduction

The new paradigm psychology of reasoning is characterized by using probability theory
instead of classical bivalent logic as a normative background theory (see, e.g., Gilio & Over,
2012; Oaksford & Chater, 2007; Over, 2009; Elqayam & Over, 2012; Pfeifer & Douven,
2014; Pfeifer, 2013, to appear; Politzer & Baratgin, 2015). One of the key topics of the new
paradigm psychology of reasoning is how people interpret and reason about conditionals
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(see, e.g., Douven, 2016; Edgington, 1995; Politzer, Over, & Baratgin, 2010; Evans & Over,
2004; Pfeifer & Kleiter, 2005, 2010; Pfeifer & Tulkki, 2017; Oaksford & Chater, 2003; Over
& Cruz, 2018). How people interpret and reason about conditionals was also one of the key
topics in the (old) logic-based paradigm psychology of reasoning, which dominated the 20th

century experimental psychology of reasoning. While human interpretation of conditionals
was labeled as “irrational” or “defective”, since the participants’ responses deviated from
the semantics of the material conditional, rationality was revisited and rehabilitated within
the new probabilistic paradigm: specifically, the majority of participants

• treat negated antecedents as irrelevant for evaluating whether a conditional holds, and

• evaluate their degrees of belief in conditionals by respective conditional probabilities
(and not by the probability of the material conditional).

These findings speak for the conditional event interpretation (see Section 2), and against
the material conditional interpretation, of conditionals.

Among various interpretations of probability, we advocate and use the coherence-based
approach to probability (see, e.g., Berti, Miranda, & Rigo, 2017; Biazzo & Gilio, 2000;
Biazzo, Gilio, Lukasiewicz, & Sanfilippo, 2005; Capotorti, Lad, & Sanfilippo, 2007; Coletti
& Scozzafava, 2002; Coletti, Petturiti, & Vantaggi, 2016; Gilio, Pfeifer, & Sanfilippo, 2015,
2016; Gilio & Sanfilippo, 2013c, 2013d, 2014; Pfeifer & Sanfilippo, 2018, 2019; Sanfilippo,
2012; Walley, Pelessoni, & Vicig, 2004), which traces back to Bruno de Finetti (1937/1980,
1970/1974). From a psychological point of view, it is evident that probability serves to
measure degrees of belief and not some objective quantity in the world: this is in line with
de Finetti provocative ontological motto “Probability does not exist”(1970/1974, Preface).
The probabilistic approach based on coherence is thus characterized by subjective, and not
by objective, probabilities. Methodologically, the approach based on coherence principle
differs in many respects to standard approaches to probabilities. We mention two of them
which highlight the psychological plausibility of our approach.

First, contrary to many approaches to probability, the coherence-based approach does not
require a complete algebra. For drawing a probabilistic modus ponens inference, for example,
an algebra could be constructed from the constituents derived from the involved events
in the inference rule. Requiring knowledge about the complete algebra is psychologically
implausible, as the reasoning person may focus on only what is considered to be relevant
for drawing the inference.

Second, conditional probability is a primitive notion and it is not defined by the fraction

of the joint and the marginal probabilities: the standard definition of P pC|Aq by P pA^Cq
P pAq

requires to assume that P pAq ą 0, as a fraction over zero is undefined. Probabilistic ap-
proaches which define conditional probabilities in this way can therefore not properly man-
age zero antecedent probabilities. The subjective probabilistic approach allows for managing
zero antecedent probabilities; moreover, zero probabilities are even exploited for reducing
the complexity of the probabilistic inference. Another aspect of defining conditional prob-
ability directly is that the degree of belief in a conditional If A, then C can be given in
a direct way by the reasoner without presupposing knowledge about P pA ^ Cq and P pAq:
even though in everyday life it may be impracticable to evaluate the latter two probabilities,
people do assess conditionals. For example, if we want to assess our degree of belief in the
conditional that If I take the train at six, I am at home at seven, we can do that directly,
without thinking first about the unconditional probabilities of I take the train at six and I
am at home at seven and of I take the train at six.
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In some recent papers of Gilio and Sanfilippo (2013a, 2013b, 2014, 2017) the notions
of conjoined and iterated conditionals have been introduced as suitable conditional random
quantities. The meaning of conditional random quantity is recalled in Section 2. The
conjoined and iterated conditionals properly extend the usual notions of conjunction and
conditioning from the case of unconditional events to the case of conditional events (see
Section 3).

As an example of a conjoined conditional consider two football matches. For each (valid)
match the possible outcomes are: home win, draw, and away win. Then, the conjunction
sentence

The outcome of the 1st match is home win (if the 1st match is valid) and the
outcome of the 2nd is draw (if the 2nd match is valid).

is a conjoined conditional, because each conjunct is itself a conditional: the first conjunct is
the conditional

the outcome of the 1st match is home win (if the 1st match is valid)

and the second conjunct is the conditional

the outcome of the 2nd is draw (if the 2nd match is valid).

As an example of an iterated conditional consider the following conditional sentence (which
was presented by Douven, 2016, p. 45):

(Iter.) If the mother is angry if the son gets a B, then she will be furious if the
son gets a C,

which is an iterated (or nested) conditional. It consists of a conditional in its antecedent

(Ant.) if the son gets a B, then the mother is angry,

and a conditional in its consequent

(Cons.) if the son gets a C, then the mother is furious.

Of course, the degree of belief in (Iter.) cannot be something like a conditional proba-
bility, as the famous triviality results by Lewis (1976) have shown. Rather, we conceive
iterated conditionals like (Iter.) as conditional random quantities (and not as conditional
events) and measure the degree of belief in such objects by previsions P (not by proba-
bilities P ; Gilio & Sanfilippo, 2014; Gilio, Over, Pfeifer, & Sanfilippo, 2017; Sanfilippo,
Pfeifer, Over, & Gilio, 2018). We will explain the formal details below. Interestingly, when
we considered the uncertainty propagation rule for the generalized probabilistic modus
ponens (Sanfilippo, Pfeifer, & Gilio, 2017), where the degree of beliefs are propagated,
for instance, from “The cup broke if dropped” pA|Hq, and “if the cup broke if dropped, then
the cup was fragile pC|pA|Hqq“ to “the cup was fragile pCq”, we observed, that the uncer-
tainty propagation rules coincide with those of the non-iterated probabilistic modus ponens
(i.e., from P pAq “ x and P pC|Aq “ y infer xy ď P pCq ď xy ` 1 ´ x). Likewise, we have
shown that the uncertainty propagation rules of the iterated version of Centering coincide
with the respective (non-iterated) probability propagation rules (Sanfilippo et al., 2018).
Thus, a remarkable aspect of the definitions of nested conditionals in terms of conditional
random quantities preserve some well known classical results.
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The main result of this paper may be also related to an analogue result derived from
the Deduction Theorem. This theorem implies that if an argument is logically valid (or if
the premises logically entail the conclusion), then the argument can be transformed into
a logically true conditional, s.t., the premises are combined by conjunction and form the
antecedent and the conclusion forms the consequent of the resulting conditional, which is
then a tautology. For example, the logically valid modus ponens (where AÑ C denotes the
material conditional sA_ C and |ù denotes logical entailment),

tA,AÑ Cu |ù C ,

can be transformed by the Deduction Theorem into the following conditional, which is a
tautology (and vice versa), that is:

pA^ pAÑ Cqq Ñ C “ A^ p sA_ Cq _ C “ Ω.

Instead of logical entailment, however, we consider in this paper the probabilistic entailment
(p-entailment), as introduced by Adams (1975, 1998). Let CpFq denote the conjunction of
the conditional events in a p-consistent family F . We study, in analogy to the Deduction
Theorem, whether the claim “a conditional event E|H is p-entailed by a p-consistent family
F of conditional events” is equivalent to the claim “the prevision of the iterated conditional
pE|Hq|CpFq is equal to 1”. We examine many cases related to this aspect; in particular, we
examine some inference rules of System P and other well known inference rules.

We remark that this basic relation, between p-entailment and iterated conditioning,
appears in its most elementary form when we consider two not impossible events A and B
in the case where A Ď B, that is where A^ sB “ H. In this case P pAq ď P pBq and then A
p-entails B, that is P pAq “ 1 implies P pBq “ 1, and the unique coherent assessment on B|A
is P pB|Aq “ 1. Therefore, by recalling that in the framework of the betting scheme, when
we pay P pB|Aq “ x, we receive B|A “ AB ` x sA, when A Ď B it holds that A p-entails B
and B|A “ AB ` 1 ¨ sA “ A` sA “ 1. Conversely, if B|A “ 1, then P pB|Aq “ 1; moreover,

P pBq “ P pB|AqP pAq ` P pB| sAqP p sAq “ P pAq ` P pB| sAqP p sAq ,

and when P pAq “ 1 it follows that P pBq “ 1, so that A p-entails B.
The outline of the paper is as follows. In Section 2 we recall some preliminary notions

and results on coherence, p-entailment and conditional random quantities, as well as con-
joined and iterated conditionals. In Section 3 we show that a (p-consistent) conditional event
A|H p-entails another (p-consistent) conditional event B|K if and only if pB|Kq|pA|Hq “ 1.
Moreover, we show that a p-consistent family of two conditional events tE1|H1, E2|H2u p-
entails a conditional event E3|H3 if and only if it holds that pE3|H3q|QCpE1|H1, E2|H2q “ 1,
whereQCpE1|H1, E2|H2q denotes the quasi conjunction of E1|H1, E2|H2. We also character-
ize p-entailment of E3|H3 from the family tE1|H1, E2|H2u by the property that E3|H3 “ 1,
or pE3|H3q|QCpSq “ 1 for some nonempty S Ď tE1|H1, E2|H2u. In Section 4 we recall
a generalized notion of iterated conditioning; then, we examine some inference rules of
System P and other well known inference rules. In Section 5 we give two results which
relate the notions of conjunction, p-entailment, and iterated conditioning. The first re-
sult shows that the iterated conditional having as antecedent and consequent the con-
junction and the quasi conjunction of two conditional events, respectively, is equal to 1,
i.e., QCpE1|H1, E2|H2q|ppE1|H1q ^ pE2|H2qq “ 1. The second result characterizes the p-
entailment of the conditional event E3|H3 from a p-consistent family tE1|H1, E2|H2u by the
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property that the iterated conditional pE3|H3q|ppE1|H1q ^ pE2|H2qq is equal to 1. Finally,
we examine some examples where the p-entailment of the conditional event E3|H3 from a
p-consistent family tE1|H1, E2|H2u does not hold, so that in these cases the iterated con-
ditional pE3|H3q|ppE1|H1q ^ pE2|H2qq does not coincide with 1. Long proofs are given in
Appendix A.

2 Preliminary notions and results

In our approach events represent uncertain facts described by (non ambiguous) logical propo-
sitions. An event A is a two-valued logical entity which is either true, or false. The indicator
of an event A is a two-valued numerical quantity which is 1, or 0, according to whether A is
true, or false, respectively. We use the same symbol to refer to an event and its indicator.
We denote by Ω the sure event and by H the impossible one (notice that, when necessary,
the symbol H will denote the empty set). Given two events A and B, we denote by A^B,
or simply by AB, the intersection, or conjunction, of A and B, as defined in propositional
logic; likewise, we denote by A_B the union, or disjunction, of A and B. We denote by sA
the negation of A. Of course, the truth values for conjunctions, disjunctions and negations
are defined as usual. Given any events A and B, we simply write A Ď B to denote that
A logically implies B, that is A sB “ H, which means that it is necessary that A and sB
cannot both be true. Given two events E,H, with H ‰ H, the conditional event E|H is
defined as a three-valued logical entity which is true, or false, or void, according to whether
EH is true, or sEH is true, or sH is true, respectively. In the betting framework, assessing
P pE|Hq “ x amounts to say that, for every real number s, you are willing to pay an amount
s x and to receive s, or 0, or s x, according to whether EH is true, or sEH is true, or sH is
true (i.e., the bet is called off), respectively. Moreover, for the random gain G “ sHpE´xq,
the possible values are sp1 ´ xq, or ´s x, or 0, according to whether EH is true, or sEH is
true, or sH is true, respectively. More generally speaking, consider a real-valued function
p : K Ñ R, where K is an arbitrary (possibly not finite) family of conditional events. Let
F “ tE1|H1, . . . , En|Hnu be a family of conditional events, where Ei|Hi P K, i “ 1, . . . , n,
and let P “ pp1, . . . , pnq be the vector of values pi “ P pEi|Hiq, where i “ 1, . . . , n. We
denote by Hn the disjunction H1_¨ ¨ ¨_Hn. With the pair pF ,Pq we associate the random
gain G “

řn
i“1 siHipEi ´ piq, where s1, . . . , sn are n arbitrary real numbers. G represents

the net gain of n transactions. Let GHn
denote the set of possible values of G restricted to

Hn, that is, the values of G when at least one conditioning event is true.

Definition 1. The function P defined on K is coherent if and only if, for every integer
n, for every finite subfamily F “ tE1|H1, . . . , En|Hnu of K and for every real numbers
s1, . . . , sn, it holds that: minGHn

ď 0 ď maxGHn
.

Intuitively, Definition 1 means in betting terms that a probability assessment is coherent
if and only if, in any finite combination of n bets, it cannot happen that the values in GHn

are all positive, or all negative (no Dutch Book).
Given a conditional event A|H with P pA|Hq “ x, then for (the indicator of) A|H we have
A|H “ AH ` x sH P t1, 0, xu (Sanfilippo et al., 2018, Appendix A.3). We recall below the
notion of logical implication of Goodman and Nguyen (1988) for conditional events (see also
Gilio & Sanfilippo, 2013d).

Definition 2. Given two conditional events A|H and B|K we define that A|H logically
implies B|K (denoted by A|H Ď B|K) if and only if AH logically implies BK and sBK
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logically implies sAH; i.e., AH Ď BK and sBK Ď sAH.

A generalization of the Goodman and Nguyen logical implication to conditional random
quantities has been given by (Pelessoni & Vicig, 2014).
The notions of p-consistency and p-entailment of Adams (1975) were formulated for condi-
tional events in the setting of coherence by Gilio and Sanfilippo (2013d) (see also Biazzo et
al., 2005; Gilio, 2002, 2012; Gilio & Sanfilippo, 2010, 2011, 2013c).

Definition 3. Let Fn “ tEi|Hi , i “ 1, . . . , nu be a family of n conditional events. Then,
Fn is p-consistent if and only if the probability assessment pp1, p2, . . . , pnq “ p1, 1, . . . , 1q on
Fn is coherent.

Definition 4. A p-consistent family Fn “ tEi|Hi , i “ 1, . . . , nu p-entails a conditional
event E|H (denoted by Fn ñp E|H) if and only if for any coherent probability assessment
pp1, . . . , pn, zq on Fn Y tE|Hu it holds that: if p1 “ ¨ ¨ ¨ “ pn “ 1, then z “ 1.

Of course, when Fn p-entails E|H, there may be coherent assessments pp1, . . . , pn, zq
with z ‰ 1, but in such cases pi ‰ 1 for at least one index i. We say that the inference from
a p-consistent family Fn to E|H is p-valid if and only if Fn p-entails E|H. We recall the
well known notion of quasi conjunction among conditional events:

Definition 5. Given a family Fn “ tEi|Hi , i “ 1, . . . , nu of n conditional events, the quasi
conjunction of the conditional events in Fn is defined as

QCpFnq “

n
ľ

i“1

p sHi _ EiHiq|p

n
ł

i“1

Hiq.

Moreover, we recall the following characterization of p-entailment (Gilio & Sanfilippo,
2013c):

Theorem 1. Let a p-consistent family Fn “ tE1|H1, . . . , En|Hnu and a conditional event
E|H be given. The following assertions are equivalent:
1. Fn p-entails E|H;
2. The assessment P “ p1, . . . , 1, zq on F “ Fn Y tE|Hu, where P pEi|Hiq “ 1, i “
1, . . . , n, P pE|Hq “ z, is coherent if and only if z “ 1;
3. The assessment P “ p1, . . . , 1, 0q on F “ Fn Y tE|Hu, where P pEi|Hiq “ 1, i “
1, . . . , n, P pE|Hq “ 0, is not coherent;
4. Either there exists a nonempty S Ď Fn such that QCpSq implies E|H, or H Ď E;
5. There exists a nonempty S Ď Fn such that QCpSq p-entails E|H.

We also recall the characterization of the p-entailment for two conditional events (Gilio
& Sanfilippo, 2013d, Theorem 7):

Theorem 2. Given two conditional events A|H, B|K, with AH ‰ H. It holds that

A|H ñp B|K ðñ A|H Ď B|K, or K Ď B ðñ Π Ď tpx, yq P r0, 1s2 : x ď yu,

where Π is the set of coherent assessments px, yq on tA|H,B|Ku.

We denote by X a random quantity, that is an uncertain real quantity, which has a well
determined but unknown value. We assume that X has a finite set of possible values. Given
any event H ‰ H, agreeing to the betting metaphor, if you assess that the prevision of
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“X conditional on H” (or short: “X given H”), PpX|Hq, is equal to µ, this means that
for any given real number s you are willing to pay an amount µs and to receive sX, or
µs, according to whether H is true, or false (i.e., when the bet is called off), respectively.
In particular, when X is (the indicator of) an event A, then PpX|Hq “ P pA|Hq. Once
µ “ PpX|Hq is assessed by the betting scheme, the random quantity X|H can be represented
as X|H “ XH`µ sH (see, e.g., Gilio & Sanfilippo, 2014). The notion of coherence can also be
defined for conditional prevision assessments on conditional random quantities (for details
see, e.g., Biazzo, Gilio, & Sanfilippo, 2012; Gilio & Sanfilippo, 2014; Sanfilippo et al., 2018).
In Gilio and Sanfilippo (2014) the notions of conjoined, disjoined, and iterated conditionals
have been studied in the framework of conditional random quantities; moreover, the result
below (Theorem 4 in that paper) establishes some conditions under which two conditional
random quantities X|H and Y |K coincide.

Theorem 3. Given any events H ‰ H and K ‰ H, and any random quantities X and Y ,
let Π be the set of the coherent prevision assessments PpX|Hq “ µ and PpY |Kq “ ν.
(i) Assume that, for every pµ, νq P Π, the values of X|H and Y |K always coincide when
H _K is true; then µ “ ν for every pµ, νq P Π.
(ii) For every pµ, νq P Π, the values of X|H and Y |K always coincide when H _K is true
if and only if X|H “ Y |K.

We recall the definition of conjunction of two conditional events A|H and B|K (Gilio
& Sanfilippo, 2013b, 2013a, 2014). Different approaches to compounded conditionals, not
based on coherence, have been developed by other authors (see, e.g., Kaufmann, 2009;
McGee, 1989).

Definition 6. Given any pair of conditional events A|H and B|K, with P pA|Hq “ x and
P pB|Kq “ y, we define their conjunction as the conditional random quantity

pA|Hq^pB|Kq “ pAHBK`x sHBK`y sKAHq|pH_Kq “

$

’

’

’

’

&

’

’

’

’

%

1, if AHBK is true,
0, if sAH _ sBK is true,
x, if sHBK is true,
y, if AH sK is true,
z, if sH sK is true,

(1)

where z is the prevision of pA|Hq ^ pB|Kq.

In betting terms, z represents the amount you agree to pay with the proviso that you
will receive:

• 1, if both conditional events are true;

• 0, if at least one of the conditional events is false;

• the probability of the conditional event that is void, if one conditional event is void
and the other one is true;

• z (i.e., the amount that you payed), if both conditional events are void.

From (1), the conjunction pA|Hq ^ pB|Kq can be represented as

pA|Hq ^ pB|Kq “ 1 ¨AHBK ` x ¨ sHBK ` y ¨AH sK ` z ¨ sH sK . (2)
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We observe that if H “ K, then sHBK “ AH sK “ H, so that pA|Hq^pB|Kq “ ABH`z sH;
moreover, AB|H “ ABH ` p sH, where p “ P pAB|Hq. We notice that pA|Hq ^ pB|Hq and
AB|H coincide when H is true; then, by Theorem 3, z “ p; thus,

pA|Hq ^ pB|Hq “ AB|H. (3)

We recall that, given any coherent assessment px, yq on tA|H,B|Ku, with A,H,B,K logi-
cally independent, and withH ‰ H,K ‰ H, the extension z “ PrpA|Hq^pB|Kqs is coherent
if and only if the following Fréchet-Hoeffding bounds are satisfied (Gilio & Sanfilippo, 2014,
Theorem 7):

maxtx` y ´ 1, 0u “ z1 ď z ď z2 “ mintx, yu . (4)

Note that the bounds in (4) coincide with the bounds for the conjunction of unconditional
probabilities, that is, given any logically independent events A,B and a coherent assessment
px, yq on tA,Bu, the extension z “ P pABq is coherent if and only if maxtx ` y ´ 1, 0u ď
P pABq ď mintx, yu. For a study of the lower and upper bounds for other definitions of
conjunction see Sanfilippo (2018). The relation between the notions of conjunction and
Frank t-norm has been studied in (Gilio & Sanfilippo, 2019a). We now turn to recalling and
discussing the notion of iterated conditioning (see, e.g., Gilio & Sanfilippo, 2013a, 2013b,
2014).

Definition 7 (Iterated conditioning). Given any pair of conditional events A|H and B|K,
with AH ‰ H, the iterated conditional pB|Kq|pA|Hq is defined as the conditional random
quantity

pB|Kq|pA|Hq “ pB|Kq ^ pA|Hq ` µ sA|H, (5)

where µ “ PrpB|Kq|pA|Hqs.

Within the betting scheme, to assess PrpB|Kq|pA|Hqs “ µ means in particular that
you are willing to pay the amount µ, with the proviso that you will receive the quantity
pA|Hq ^ pB|Kq ` µ sA|H. Of course, this bet requires that you preliminarily evaluate (in a
coherent way) the quantities: x “ P pA|Hq, y “ P pB|Kq, z “ PrpA|Hq ^ pB|Kqs.

Remark 1. Notice that we assumed that AH ‰ H to give a nontrivial meaning to the notion
of the iterated conditional. Indeed, if AH were equal to H, that is A|H “ 0, then it would
be the case that sA|H “ 1 and pB|Kq|pA|Hq “ pB|Kq|0 “ pB|Kq^pA|Hq`µ sA|H “ µ would
follow; that is, pB|Kq|pA|Hq would coincide with the (indeterminate) value µ. Similarly in
the case of B|H (which is of no interest): the trivial iterated conditional pB|Kq|0 is not
considered in our approach.

We observe that, by linearity of prevision, it holds that

µ “ PppB|Kq|pA|Hqq “ PppB|Kq ^ pA|Hqq ` µP p sA|Hq “ z ` µp1´ xq ,

from which it follows that z “ µx. Here, when x ą 0, we obtain µ “ z
x P r0, 1s. Notice that

z`µp1´xq, i.e. µ, is the value of pB|Kq|pA|Hq when sH sK is true. Then, by observing that

sAH sK _ sAHBK _ sAH sBK _ sH sK “ sAH _ sH sK ,
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we obtain

pB|Kq|pA|Hq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

1, if AHBK is true,
0, if AH sBK is true,
y, if AH sK is true,
x` µp1´ xq, if sHBK is true,
µp1´ xq, if sH sBK is true,
µ, if sAH sK is true,
µ, if sAHBK is true,
µ, if sAH sBK is true,
µ, if sH sK is true,

“

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if AHBK is true,
0, if AH sBK is true,
y, if AH sK is true,
x` µp1´ xq, if sHBK is true,
µp1´ xq, if sH sBK is true,
µ, if sAH _ sH sK is true.

In particular, when x “ 0, it holds that

pB|Kq|pA|Hq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if AHBK is true,
0, if AH sBK is true,
y, if AH sK is true,
µ, if sHBK is true,
µ, if sH sBK is true,
µ, if sAH _ sH sK is true,

“

$

’

’

&

’

’

%

1, if AHBK is true,
0, if AH sBK is true,
y, if AH sK is true,
µ, if sAH _ sH is true.

As we can see, in order that the prevision assessment µ on pB|Kq|pA|Hq be coherent, µ
must belong to the convex hull of the values 0, y, 1; that is, (also when x “ 0) it must be
that µ P r0, 1s.

3 Quasi conjunction, iteration, and p-entailment of con-
ditionals

In this section we first show that a (p-consistent) conditional A|H p-entails another (p-
consistent) conditional B|K if and only if the unique coherent prevision assessment for the
corresponding iterated conditional pB|Kq|pA|Hq is equal to 1, that is, A|H p-entails B|K
if and only if pB|Kq|pA|Hq “ 1. Then, we show that tE1|H1, E2|H2u p-entails E3|H3 if
and only if pE3|H3q|QCpE1|H1, E2|H2q “ 1. We first give a preliminary result which relates
conjunction and logical implication of Goodman and Nguyen.

Proposition 1. Given two conditional events A|H and B|K, it holds that

A|H Ď B|K ùñ pA|Hq ^ pB|Kq “ A|H . (6)

Proof. We set P pA|Hq “ x, P pB|Kq “ y, and PrpA|Hq ^ pB|Kqs “ z. As A|H Ď B|K, it
holds that AH sBK “ AH sK “ sH sBK “ H and AHBK “ AH (Gilio & Sanfilippo, 2013d,
Remark 3). Then,

pA|Hq ^ pB|Kq “ AHBK ` x sHBK ` y sKAH ` z sH sK “ AH ` x sHBK ` z sH sK.
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Moreover,
A|H “ AH ` x sH “ AH ` x sHBK ` x sH sK.

We notice that pA|Hq ^ pB|Kq and A|H coincide when H _K is true. Then, z “ x follows
from Theorem 3. Therefore, pA|Hq ^ pB|Kq “ A|H.

Theorem 4. Given two (p-consistent) conditional events A|H and B|K, with AH ‰ H, it
holds that,

A|H ñp B|K ðñ pB|Kq|pA|Hq “ 1. (7)

Proof. pñq. We distinguish two cases: piq A|H Ď B|K; piiq K Ď B. Case piq. We remark
that if A|H Ď B|K, then A|H ď B|K and P pA|Hq ď P pB|Kq; moreover, by Proposition 1,
pA|Hq ^ pB|Kq “ A|H. Then, by defining PppB|Kq|pA|Hqq “ µ, P pA|Hq “ x, we obtain

pB|Kq|pA|Hq “ pA|Hq ^ pB|Kq ` µ sA|H “ A|H ` µ sA|H “

“

$

&

%

1, if AH is true,
µ, if sAH is true,
x` µp1´ xq, if sH is true.

By linearity of prevision, we obtain

PppB|Kq|pA|Hqq “ µ “ P pA|Hq ` µP p sA|Hq “ x` µp1´ xq ; (8)

which implies that

pB|Kq|pA|Hq “

"

1, if AH is true,
µ, if sAH _ sH is true.

In order for µ to be coherent, µ must belong to the convex hull of the set t1u; i.e. µ “ 1. In
other words, given two conditional events A|H and B|K, with A|H Ď B|K, it holds that:
PppB|Kq|pA|Hqq “ 1. Thus pB|Kq|pA|Hq “ 1.
Case piiq. If K Ď B it holds that P pB|Kq “ y “ 1 and B|K “ 1. Then, pA|Hq ^
pB|Kq “ pA|Hq|pH _ Kq “ A|H (see Gilio & Sanfilippo, 2013a, Remark 4). Moreover,
pB|Kq|pA|Hq “ A|H ` µ sA|H and by linearity of prevision it holds that µ “ x ` µp1 ´ xq.
Then,

pB|Kq|pA|Hq “

$

&

%

1, if AH is true,
µ, if sAH is true,
x` µp1´ xq, if sH is true,

“

"

1, if AH is true,
µ, if sAH _ sH is true.

Then, by coherence, µ “ 1 and pB|Kq|pA|Hq “ 1.
Thus, p-entailment of B|K from A|H implies pB|Kq|pA|Hq “ 1.
pðq. Assume that pB|Kq|pA|Hq “ 1, so that the unique coherent assessment for

PrpB|Kq|pA|Hqs is µ “ 1. Then, by observing that PrpA|Hq ^ pB|Kqs ď P pB|Kq “ y,
it follows that

PrpA|Hq ^ pB|Kqs “ PrpB|Kq|pA|HqsP pA|Hq “ P pA|Hq “ x ď y.

Then, when x “ 1, it holds that y “ 1; that is, A|H p-entails B|K.

10



Corollary 1. Let three conditional events E1|H1, E2|H2, and E3|H3 be given, where
tE1|H1, E2|H2u is p-consistent. The quasi conjunction QCpE1|H1, E2|H2q p-entails E3|H3

if and only if pE3|H3q|QCpE1|H1, E2|H2q “ 1.

Proof. The assertion directly follows by applying Theorem 4, with A|H “

QCpE1|H1, E2|H2q and B|K “ E3|H3.

In the next result we characterize the p-entailment of E3|H3 from the family
tE1|H1, E2|H2u by the property that E3|H3 “ 1, or pE3|H3q|QCpSq “ 1 for some nonempty
S Ď tE1|H1, E2|H2u.

Theorem 5. Let three conditional events E1|H1, E2|H2, and E3|H3 be given, where
tE1|H1, E2|H2u is p-consistent. Then, the family tE1|H1, E2|H2u p-entails E3|H3 if
and only if at least one of the following conditions is satisfied: piq E3|H3 “ 1; piiq
pE3|H3q|pE1|H1q “ 1; piiiq pE3|H3q|pE2|H2q “ 1; pivq pE3|H3q|QCpE1|H1, E2|H2q “ 1.

Proof. pñq. By Theorem 1, as tE1|H1, E2|H2u p-entails E3|H3, it follows that QCpSq Ď
E3|H3 for some H ‰ S Ď tE1|H1, E2|H2u, or H3 Ď E3. If H3 Ď E3, then P pE3|H3q “ 1
and E3|H3 “ 1. If S “ tEi|Hiu, for i “ 1 or i “ 2, by Theorem 4 it holds
that pE3|H3q|pEi|Hiq “ 1. If S “ tE1|H1, E2|H2u, then by Corollary 1 it holds that
pE3|H3q|QCpE1|H1, E2|H2q “ 1.
pðq. If E3|H3 “ 1 then the unique coherent assessment on E3|H3 is P pE3|H3q “ 1. This
means that H3 Ď E3 and then tE1|H1, E2|H2u p-entails E3|H3.
If pE3|H3q|pEi|Hiq “ 1, for i “ 1 or i “ 2, then by Theorem 4 it holds that Ei|Hi p-entails
E3|H3 and hence, by Theorem 1, tE1|H1, E2|H2u p-entails E3|H3.
Finally, if pE3|H3q|QCpE1|H1, E2|H2q “ 1, then by Corollary 1 it holds that
QCpE1|H1, E2|H2q p-entails E3|H3 and hence, by Theorem 1, tE1|H1, E2|H2u p-entails
E3|H3.

4 Iterated conditionals and some inference rules

In this section we examine some inference rules with tE1|H1, E2|H2u as the premise
set, and E3|H3 as the conclusion, by showing that, if tE1|H1, E2|H2u ñp E3|H3, then
pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1, which means that the conclusion given the conjunction
of the premises is constant and equal to 1. Note that the meaning of the term “given” will
be clarified in Definition 9. We recall below the notion of conjunction of three conditional
events (Gilio & Sanfilippo, 2017).

Definition 8. Given a family of three conditional events F “ tE1|H1, E2|H2,E3|H3}, we
set P pEi|Hiq “ xi, i “ 1, 2, 3, PrpEi|Hiq ^ pEj |Hjqs “ xij “ xji, i ‰ j. The conjunction

11



CpFq “ pE1|H1q ^ pE2|H2q ^ pE3|H3q is defined as the conditional random quantity

CpFq “ pE1|H1q ^ pE2|H2q ^ pE3|H3q “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

1, if E1H1E2H2E3H3 is true,
0, if sE1H1 _ sE2H2 _ sE3H3 is true,
x1, if sH1E2H2E3H3 is true,
x2, if E1H1

sH2E3H3 is true,
x3, if E1H1E2H2

sH3 is true,
x12, if sH1

sH2E3H3 is true,
x13, if sH1E2H2

sH3 is true,
x23, if E1H1

sH2
sH3 is true,

x123, if sH1
sH2

sH3 is true,

(9)

where x123 “ PrCpFqs and the conditioning event is H1 _H2 _H3.

Within the betting scheme, to assess PrCpFqs “ x123 means in particular that you are
willing to pay the amount x123, with the proviso that you will receive the quantity CpFq. Of
course, this bet requires that you preliminarily evaluate (in a coherent way) the quantities
x1, x2, x12, x13, and x23.

We define below the object pE3|H3q|ppE1|H1q ^ pE2|H2qq, which has been introduced in
general in (Gilio & Sanfilippo, 2019b, Definition 14).

Definition 9. Let three conditional events E1|H1, E2|H2, and E3|H3 be given, with
pE1|H1q^pE2|H2q ‰ 0. We denote by pE3|H3q|ppE1|H1q^pE2|H2qq the conditional random
quantity

pE1|H1q ^ pE2|H2q ^ pE3|H3q ` µp1´ pE1|H1q ^ pE2|H2qq ,

where µ “ PrpE3|H3q|ppE1|H1q ^ pE2|H2qqs.

Remark 2. We observe that, defining PrpE1|H1q^pE2|H2q^pE3|H3qs “ t and PrpE1|H1q^

pE2|H2qs “ z, by the linearity of prevision it holds that µ “ t` µp1´ zq; then, t “ µz, that
is

PrpE1|H1q ^ pE2|H2q ^ pE3|H3qs “

“ PrpE3|H3q|ppE1|H1q ^ pE2|H2qqsPrpE1|H1q ^ pE2|H2qs.

4.1 Valid conditional syllogisms

We examine the p-valid conditional syllogisms Modus Ponens and Modus Tollens by instan-
tiations of pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1, where tE1|H1, E2|H2u is the premise set and
E3|H3 is the conclusion. We note that an unconditional event A, which denotes the uncon-
ditional premise of Modus Ponens, coincides with the conditional event A|Ω. Likewise, the
unconditional premise of Modus Tollens sC coincides with sC|Ω.

Modus Ponens: tC|A,Au ñp C. It holds that pC|Aq ^ A “ AC “ QCpACq; then, by
Theorem 4, as AC Ď C it follows that

C|ppC|Aq ^Aq “ C|pQCppC|Aq, Aq “ C|AC “ 1 ,

this means that the conclusion of the Modus Ponens given the conjunction of the premises
is constant and coincides with 1. This can be seen as an analogy to the fact that the modus
ponens is logically valid in logic and that the probabilistic modus ponens is p-valid.

12



Modus Tollens: tC|A, sCu ñp
sA. It holds that pC|Aq ^ sC “ x sA sC, where x “ P pC|Aq,

while QCpC|A, sCq “ sA sC; then, assuming x ą 0, we obtain

sA|ppC|Aq^ sCq “ sA^pC|Aq^ sC`µp1´pC|Aq^ sCqq “

"

µ, if A_ C is true,
x` µp1´ xq, if sA sC is true.

By coherence it must be the case that µ “ x ` µp1 ´ xq, i.e., x “ µx, which implies
µ “ x` µp1´ xq “ 1; therefore,

sA|ppC|Aq ^ sCq “ 1 .

This can be seen as an analogy to the fact that the modus tollens is logically valid in logic and
that the probabilistic modus tollens is p-valid. Notice that, if x “ 0, then ppC|Aq ^ sCq “ 0
and sA|ppC|Aq ^ sCq “ sA|0 “ µ, which is indeterminate (see Remark 1).

4.2 Bayes rule

We now show the p-entailment of H|EA from tE|AH,H|Au, that is the p-validity of the
Bayes rule. Then, we verify that pH|EAq|ppE|HAq ^ pH|Aqq “ 1.

Bayes. We note that pE|AHq ^ pH|Aq “ EH|A “ QCpE|AH,H|Aq; then, as EH|A Ď
H|EA, by Theorem 1 it holds that tE|AH,H|Au ñp H|EA. Moreover, by Theorem 4, it
follows that

pH|EAq|ppE|HAq ^ pH|Aqq “ pH|EAq|QCpE|HA,H|Aq “ pH|EAq|pEH|Aq “ 1 .

In particular, if A “ Ω, we obtain pH|Eq|ppE|Hq ^Hq “ pH|Eq|pEHq “ 1.

4.3 And, Cut, Cautious Monotonicity, and Or of System P

In this section we consider the following inference rules of System P (Kraus, Lehmann,
& Magidor, 1990): And, Cut, Cautious Monotonicity (short: CM), and Or. System P
is a basic nonmonotonic reasoning which allows for retracting conclusions in the light of
new premises. The probabilistic versions of the rules of System P are p-valid (Adams,
1975; Biazzo, Gilio, Lukasiewicz, & Sanfilippo, 2002; Gilio, 2002). Experimental evidence
supports the psychological plausibility of System P (see, e.g. Da Silva Neves, Bonnefon, &
Raufaste, 2002; Pfeifer & Kleiter, 2003, 2005; Schurz, 2005).

And rule: tB|A,C|Au ñp BC|A. By formula (3), it holds that pB|Aq^pC|Aq “ BC|A “
QCpB|A,C|Aq; then, by Theorem 4, as BC|A Ď BC|A it follows that

pBC|Aq|ppC|Aq ^ pB|Aqq “ pBC|Aq|QCpB|A,C|Aq “ pBC|Aq|pBC|Aq “ 1 .

Cut rule: tC|AB,B|Au ñp C|A. We note that pC|ABq ^ pB|Aq “ BC|A “

QCpC|AB,B|Aq; then, by Theorem 4, as BC|A Ď C|A it follows that

pC|Aq|ppC|ABq ^ pB|Aqq “ pC|Aq|QCpC|AB,B|Aq “ pC|Aq|pBC|Aq “ 1 .

CM rule: tC|A,B|Au ñp C|AB. By formula (3), it holds that pC|Aq^pB|Aq “ BC|A “
QCpC|A,B|Aq; then, by Theorem 4, as BC|A Ď C|AB it follows that

pC|ABq|ppC|Aq ^ pB|Aqq “ pC|ABq|QCpC|A,B|Aq “ pC|ABq|pBC|Aq “ 1 .
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Or rule: tC|A,C|Bu ñp C|pA_Bq. The next result shows that the conclusion of the Or
rule, C|pA_Bq, given the conjunction of the premises, pC|Aq ^ pC|Bq, coincides with 1.

Theorem 6. Given a p-consistent family tC|A,C|Bu it holds that

pC|pA_Bq|ppC|Aq ^ pC|Bqq “ 1.

Proof. See Appendix A.

Remark 3. We observe that

QCpC|A,C|Bq “ pp sA_ Cq ^ p sB _ Cqq|pA_Bq “ C|pA_Bq.

Then, the statement of Theorem 6 amounts to say that the iterated conditional
QCpC|A,C|Bq|ppC|Aq ^ pC|Bqq is equal to 1. This aspect will be analyzed in general in
the next section.

5 Conjunction, iteration, and p-entailment of condi-
tionals

In this section we give two results which relate p-entailment, conjunction, and iter-
ated conditioning. Then, we give some examples of non p-valid argument forms. In
the next theorem, by defining F “ tE1|H1, E2|H2u, QCpFq “ QCpE1|H1, E2|H2q and
CpFq “ pE1|H1q ^ pE2|H2q, we show that, under p-consistency of F , the iterated condi-
tional QCpFq|pCpFqq is equal to 1.

Theorem 7. Given a p-consistent family F “ tE1|H1, E2|H2u, it holds that
QCpFq|CpFq “ 1.

Proof. See Appendix A.

The next theorem shows that the p-entailment of a conditional event E3|H3

from a p-consistent family tE1|H1, E2|H2u is equivalent to the iterated conditional
pE3|H3q|ppE1|H1q ^ pE2|H2qq being constant and equal to 1, i.e., the set of possible val-
ues of pE3|H3q|ppE1|H1q ^ pE2|H2qq is the singleton t1u.

Theorem 8. Let three conditional events E1|H1, E2|H2, and E3|H3 be given, where
tE1|H1, E2|H2u is p-consistent. Then, tE1|H1, E2|H2u p-entails E3|H3 if and only if
pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1.

Proof. See Appendix A.

Remark 4. We recall that tE1|H1, E2|H2u p-entails QCpE1|H1, E2|H2q (QAND rule, see,
e.g., Gilio & Sanfilippo, 2011, 2013c). Then, Theorem 7 follows by applying Theorem 8
with E3|H3 “ QCpE1|H1, E2|H2q. Similar comments can be made for the inference rules
examined in Section 4.

In the examples below we show that if tE1|H1, E2|H2u does not p-entail E3|H3, the
iterated conditional pE3|H3q|ppE1|H1q ^ pE2|H2qq does not coincide with 1. This means
that the set of possible values of the iterated conditional pE3|H3q|ppE1|H1q ^ pE2|H2qq is
not the singleton t1u.
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Example 1 (Denial of the antecedent). We consider the rule where the premise set is
t sA,C|Au and the conclusion is sC. As is well known, Denial of the antecedent is neither log-
ically valid in logic nor p-valid in probability logic. Indeed, by defining P p sAq “ x, P pC|Aq “
y, P p sCq “ z, it holds that

P p sCq “ z “ 1´ P pCq “ 1´ rP pC|AqP pAq ` P pC| sAqP p sAqs “ 1´ yp1´ xq ´ P pC| sAqx;

Then, when x “ y “ 1, we obtain z “ 1´ P pC| sAq P r0, 1s; thus, t sA,C|Au does not p-entail
sC. Then, by Theorem 8, the iterated conditional sC|p sA ^ pC|Aqq does not coincide with 1.
Indeed, by defining Pr sC|p sA^ pC|Aqqs “ µ, it holds that

sC|p sA^ pC|Aqq “ sC ^ sA^ pC|Aq ` µp1´ sA^ pC|Aqq “

$

’

’

&

’

’

%

µ, if AC is true,
µ, if A sC is true,
µp1´ yq, if sAC is true,
y ` µp1´ yq, if sA sC is true.

If y “ 1, we obtain

sC|p sA^ pC|Aqq “

$

’

’

&

’

’

%

µ, if AC is true,
µ, if A sC is true,
1, if sAC is true,
0, if sA sC is true,

with µ being coherent, for every µ P r0, 1s. Therefore, sC|p sA^ pC|Aqq ‰ 1.

Example 2 (Affirmation of the consequent). We consider the rule where the premise set is
tC,C|Au and the conclusion is A. Affirmation of the consequent is neither logically valid in
logic nor p-valid in probability logic. Indeed, by defining P pCq “ x, P pC|Aq “ y, P pAq “ z,
and P pC| sAq “ t, it holds that

P pCq “ x “ P pC|AqP pAq ` P pC| sAqP p sAq “ yz ` tp1´ zq.

Then, when x “ y “ 1, we obtain 1 “ z ` t´ zt, that is zp1´ tq “ p1´ tq. Therefore, when
t ă 1, it follows that z “ 1. In other words, by adding the premise P pC| sAq ă 1 (i.e. what
we introduced as a negated default in Gilio et al., 2016), it holds that

P pCq “ 1, P pC|Aq “ 1, P pC| sAq ă 1 ñ P pAq “ 1.

But in general (where no assumptions are made about P pC| sAq), z P r0, 1s; thus p-entailment
of A from tC,C|Au does not hold. Then, by Theorem 8, the iterated conditional A|pC ^
pC|Aqq does not coincide with 1. Indeed, by defining PrA|pC ^ pC|Aqqs “ µ, it holds that

A|pC ^ pC|Aqq “ A^ C ^ pC|Aq ` µp1´ C ^ pC|Aqq “

$

&

%

1, if AC is true,
µp1´ yq, if sAC is true,
µ, if sC is true.

If y “ 1, we obtain

A|pC ^ pC|Aqq “

$

&

%

1, if AC is true,
0, if sAC is true,
µ, if sC is true.

with µ being coherent, for every µ P r0, 1s. Therefore, A|pC ^ pC|Aqq ‰ 1.
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Example 3 (Transitivity). We consider the rule where tC|B,B|Au is the premise set and
C|A is the conclusion. Transitivity is not p-valid. Indeed, it can be verified that the
assessment p1, 1q on tC|B,B|Au is coherent, that is tC|B,B|Au is p-consistent; more-
over, the assessment p1, 1, 0q on tC|B,B|A,C|Au is coherent and then, by Theorem 1,
tC|B,B|A,C|Au does not p-entail C|A. Thus, by Theorem 8, the iterated conditional
pC|Aq|ppC|Bq ^ pB|Aqq does not coincide with 1. We also point out that by adding the
negated default P p sA|pA_Bqq ă 1 it holds that (Gilio et al., 2016, Theorem 5)

P pC|Bq “ 1, P pB|Aq “ 1, P p sA|pA_Bqq ă 1 ñ P pC|Aq “ 1,

which is a probabilistic version of weak transitivity.

6 Concluding remarks

The results of this paper are based on the notions of conjoined conditionals and iterated
conditionals. These objects, introduced in recent papers by Gilio and Sanfilippo, are defined
in the setting of coherence by means of suitable conditional random quantities with values
in the interval r0, 1s. By exploiting the logical implication of Goodman and Nguyen we have
shown that, given two conditional events A|H and B|K with AH ‰ H and BK ‰ H, A|H
p-entails B|K if and only if pB|Kq|pA|Hq “ 1. An analogy to this result can be derived
from the Deduction Theorem in logic: if the material conditional K Ñ B follows logically
from H Ñ A, then the (nested) material conditional pH Ñ Aq Ñ pK Ñ Bq is a tautology
and vice versa. Moreover, we have shown that a p-consistent family F “ tE1|H1, E2|H2u

p-entails a conditional event E3|H3 if and only if E3|H3 “ 1, or pE3|H3q|QCpSq “ 1 for
some nonempty subset S of F . We have also examined the inference rules And, Cut,
Cautious Monotonicity, and Or of System P, and the inference rules Modus Ponens, Modus
Tollens, and Bayes. We have shown that the iterated conditional QCpFq|CpFq is equal
to 1 for every p-consistent family F “ tE1|H1, E2|H2u. Then, we have characterized the
p-entailment of E3|H3 from a p-consistent family F by showing that it is equivalent to
the condition pE3|H3q|CpFq “ 1. Moreover, we have examined Denial of the Antecedent,
Affirmation of the Consequent and Transitivity. We have shown that for these argu-
ment forms the p-entailment of the conclusion E3|H3 from a p-consistent premise set
tE1|H1, E2|H2u does not hold, so that pE3|H3q|ppE1|H1q ^ pE2|H2qq ‰ 1. In particular,
concerning the Affirmation of the Consequent and Transitivity, we have also shown that (a
kind of conditional) p-entailment holds if we add a suitable negated default to the premise
set. Psychologically, this could serve as a new explanation why some people interpret
Affirmation of the Consequent and Transitivity as valid argument forms. Indeed, these
argument forms play an important role in abductive reasoning in philosophy of science
(e.g., where conclusions about possible causes/diseases are derived from effects/symptoms).
Future work is needed to explore such applications of the presented theory and to explore
further formal desiderata also related to the Deduction Theorem.
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A Appendix

In this appendix we give the proofs of Theorems 6, 7, and 8.

Proof. of Theorem 6.
By Definition 9, we obtain

pC|pA_Bqq|ppC|Aq ^ pC|Bqq “ pC|pA_Bqq ^ pC|Aq ^ pC|Bq ` µr1´ pC|Aq ^ pC|Bqs ,

where µ “ PrpC|pA_Bqq|pC|Aq^pC|Bqs. We set P pC|Aq “ x, P pC|Bq “ y, and PppC|Aq^
pC|Bqq “ z; then,

pC|Aq ^ pC|Bq “

$

’

’

’

’

&

’

’

’

’

%

1, if ABC is true,
0, if pA_Bq sC is true,
x, if sABC is true,
y, if A sBC is true,
z, if sA sB is true.

Moreover, by defining PrpC|pA_Bqq ^ pC|Aq ^ pC|Bqs “ t, we obtain

pC|pA_Bqq ^ pC|Aq ^ pC|Bq “

$

’

’

’

’

&

’

’

’

’

%

1, if ABC is true,
0, if pA_Bq sC is true,
x, if sABC is true,
y, if A sBC is true,
t, if sA sB is true.

As we can see, pC|pA _ Bqq ^ pC|Aq ^ pC|Bq and pC|Aq ^ pC|Bq coincide when A _ B is
true; then, by Theorem 3 it holds that t “ z, so that

pC|pA_Bqq ^ pC|Aq ^ pC|Bq “ pC|Aq ^ pC|Bq.

Then,

pC|pA_Bqq|ppC|Aq ^ pC|Bqq “ pC|Aq ^ pC|Bq ` µr1´ pC|Aq ^ pC|Bqs , (10)

and by the linearity of prevision we obtain µ “ z ` µp1´ zq, so that z “ µz. Moreover, by
(10) we obtain

pC|pA_Bqq|ppC|Aq ^ pC|Bqq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, if ABC is true,
x` µp1´ xq, if sABC is true,
y ` µp1´ yq, if A sBC is true,
µ, if AB sC is true,
µ, if sAB sC is true,
µ, if A sB sC is true,
µ, if sA sB is true,

which reduces to

pC|pA_Bqq|ppC|Aq ^ pC|Bqq “

$

’

’

&

’

’

%

1, if ABC is true,
x` µp1´ xq, if sABC is true,
y ` µp1´ yq, if A sBC is true,
µ, if sA sBC _ sC is true.
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In order to prove that pC|pA_Bqq|ppC|Aq^ pC|Bqq “ 1, we distinguish the following cases:
(a) z ą 0; (b) z “ x “ y “ 0; (c) z “ 0, x ą 0, y ą 0; (d) z “ y “ 0, x ą 0; (e)
z “ x “ 0, y ą 0.
Case (a). By recalling that z “ µz, as z ą 0 it follows that µ “ 1; then, y ` µp1 ´ yq “
x` µp1´ xq “ 1, so that

pC|pA_Bqq|ppC|Aq ^ pC|Bqq “

"

1, if ABC _A sBC _ sABC is true,
µ, if sA sBC _ sC is true.

Then, by coherence, µ “ 1 and pC|pA_Bqq|ppC|Aq ^ pC|Bqq “ 1.
Case (b). As x “ y “ 0, it holds that x` µp1´ xq “ y ` µp1´ yq “ µ; then

pC|pA_Bqq|ppC|Aq ^ pC|Bqq “

"

1, if ABC is true,
µ, if ĞABC is true.

,

and, by coherence, µ “ 1; thus, pC|pA_Bqq|ppC|Aq ^ pC|Bqq “ 1.
Case (c). By coherence, µ is a linear convex combination of the values 1, y ` µp1´ yq, and
x` µp1´ xq, that is,

µ “ λ1 ` λ2py ` µp1´ yqq ` λ3px` µp1´ xqq , (11)

with λh ě 0, h “ 1, 2, 3, and λ1 ` λ2 ` λ3 “ 1. The equation (11) can be written as

µpλ1 ` λ2y ` λ3xq “ λ1 ` λ2y ` λ3x ,

where λ1`λ2y`λ3x ą 0; then µ “ y`µp1´yq “ x`µp1´xq “ 1 and pC|pA_Bqq|ppC|Aq^
pC|Bqq “ 1.
Case (d). As y “ 0 it holds that y ` µp1´ yq “ µ; then,

pC|pA_Bqq|ppC|Aq ^ pC|Bqq “

$

&

%

1, if ABC is true,
x` µp1´ xq, if sABC is true,
µ, if ĚBC is true.

By coherence, µ is a linear convex combination of the values 1, x` µp1´ xq, that is

µ “ λ1 ` λ2px` µp1´ xqq , λ1 ě 0 , λ2 ě 0 , λ1 ` λ2 “ 1 . (12)

The equation (12) can be written as µpλ1 ` λ2xq “ λ1 ` λ2x, where λ1 ` λ2x ą 0; then,
µ “ x` µp1´ xq “ 1 and pC|pA_Bqq|ppC|Aq ^ pC|Bqq “ 1.
Case (e). Since x “ 0, it holds that x` µp1´ xq “ µ; then,

pC|pA_Bqq|ppC|Aq ^ pC|Bqq “

$

&

%

1, if ABC is true,
y ` µp1´ yq, if A sBC is true,
µ, if ĚAC is true.

By coherence, µ is a linear convex combination of the values 1, y ` µp1´ yq, that is

µ “ λ1 ` λ2py ` µp1´ yqq , λ1 ě 0 , λ2 ě 0 , λ1 ` λ2 “ 1 . (13)

The equation (13) can be written as µpλ1 ` λ2yq “ λ1 ` λ2y, where λ1 ` λ2y ą 0; then,
µ “ y ` µp1´ yq “ 1 and pC|pA_Bqq|ppC|Aq ^ pC|Bqq “ 1.
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Ch QCpFq CpFq CpFq ^QCpFq
E1H1E2H2 1 1 1
E1H1

sE2H2 0 0 0
E1H1

sH2 1 x2 x2
sE1H1E2H2 0 0 0
sE1H1

sE2H2 0 0 0
sE1H1

sH2 0 0 0
sH1E2H2 1 x1 x1
sH1

sE2H2 0 0 0
sH1

sH2 ν12 x12 η

Table 1: Possible values of the random vector pQCpFq, CpFq, CpFq ^QCpFqq.

Proof. of Theorem 7.
We recall that F “ tE1|H1, E2|H2u. We set P pE1|H1q “ x1, P pE2|H2q “ x2, P pQCpFqq “
ν12, PpCpFqq “ x12, PrCpFq ^QCpFqs “ η, and PrQCpFq|CpFqs “ µ. Then,

QCpFq|CpFq “ CpFq ^QCpFq ` µp1´ CpFqq .

Based on Table 1, the possible values of the random vector pCpFq, CpFq ^QCpFqq are

p1, 1q , p0, 0q , px1, x1q , px2, x2q , px12, ηq ,

where the value px12, ηq is associated to the constituent sH1
sH2. As we can see, CpFq and

CpFq ^QCpFq coincide when H1 _H2 is true; then, by Theorem 3, x12 “ η, so that CpFq
and CpFq ^QCpFq coincide in all cases, that is CpFq “ CpFq ^QCpFq. Then,

QCpFq|CpFq “ CpFq ` µp1´ CpFqq “

$

’

’

’

’

&

’

’

’

’

%

1, if CpFq “ 1,
µ, if CpFq “ 0,
x1 ` µp1´ x1q, if CpFq “ x1,
x2 ` µp1´ x2q, if CpFq “ x2,
x12 ` µp1´ x12q, if CpFq “ x12.

By the linearity of prevision, we obtain µ “ x12 ` µp1´ x12q, that is x12 “ µx12. Then,

QCpFq|CpFq “ CpFq ` µp1´ CpFqq “

$

’

’

&

’

’

%

1, if CpFq “ 1,
x1 ` µp1´ x1q, if CpFq “ x1,
x2 ` µp1´ x2q, if CpFq “ x2,
µ, if CpFq “ 0, or CpFq “ x12.

As x12 “ µx12 we immediately obtain that µ “ 1 when x12 ą 0. We show below that µ “ 1
in all cases. We distinguish the following cases:
(a) x1 “ x2 “ 0; (b) x1 ą 0, x2 ą 0; (c) x1 “ 0, x2 ą 0; (d) x2 “ 0, x1 ą 0.
Case (a). Since x1 “ x2 “ 0, it holds that x1 ` µp1 ´ x1q “ x2 ` µp1 ´ x2q “ µ, so that
QCpFq|CpFq P t1, µu. Based on the betting scheme, µ “ PrQCpFq|CpFqs is the amount
to be paid in order to receive 1, or µ, according to whether the event pCpFq “ 1q is true,
or false, respectively. Then, by coherence, it must be the case that µ “ 1. Therefore,
QCpFq|CpFq “ 1.
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Case (b). By coherence, µ must be a linear convex combination of the values 1, x1`µp1´x1q,
and x2 ` µp1´ x2q, that is,

µ “ λ1 ` λ2px1 ` µp1´ x1qq ` λ3px2 ` µp1´ x2qq , (14)

with λh ě 0, h “ 1, 2, 3, and λ1 ` λ2 ` λ3 “ 1. The equation (14) can be written as

µpλ1 ` λ2x1 ` λ3x2q “ λ1 ` λ2x1 ` λ3x2 ,

where λ1`λ2x1`λ3x2 ą 0; then, µ “ x1`µp1´x1q “ x2`µp1´x2q “ 1 and QCpFq|CpFq “
1.
Case (c). As x1 “ 0, it holds that x1 ` µp1´ x1q “ µ, so that

QCpFq|CpFq P t1, x2 ` µp1´ x2q, µu .

Then, by coherence, µ must be a linear convex combination of the values 1, x2 ` µp1´ x2q,
that is

µ “ λ1 ` λ2rx2 ` µp1´ x2qs , λ1 ` λ2 “ 1 , λ1 ě 0 , λ2 ě 0 .

It follows that µpλ1`λ2x2q “ λ1`λ2x2, with λ1`λ2x2 ą 0. Then, µ “ 1 andQCpFq|CpFq “
1.
Case (d). As x2 “ 0, it holds that x2 ` µp1 ´ x2q “ µ, so that QCpFq|CpFq P t1, x1 `
µp1 ´ x1q, µu. Then, by coherence, µ must be a linear convex combination of the values
1, x1 ` µp1´ x1q, that is

µ “ λ1 ` λ2rx1 ` µp1´ x1qs , λ1 ` λ2 “ 1 , λ1 ě 0 , λ2 ě 0 .

It follows that µpλ1`λ2x1q “ λ1`λ2x1, with λ1`λ2x1 ą 0. Then, µ “ 1 andQCpFq|CpFq “
1.
Thus, from the p-consistency of the family F it follows that QCpFq|CpFq “ 1.

Proof. of Theorem 8.
pñq. We observe that by p-consistency E1H1E2H2 ‰ H and then pE1|H1q ^ pE2|H2q ‰ 0.
By Theorem 1, tE1|H1, E2|H2u p-entails E3|H3 if and only if it holds that QCpSq Ď E3|H3

for some H ‰ S Ď tE1|H1, E2|H2u, or H3 Ď E3. We observe that, when H3 Ę E3, it holds
that S “ tE1|H1u, or S “ tE2|H2u, or S “ tE1|H1, E2|H2u. We show that the iterated
conditional may be represented as

pE3|H3q|ppE1|H1q ^ pE2|H2qq “ pE1|H1q ^ pE2|H2q ` µp1´ pE1|H1q ^ pE2|H2qq , (15)

where µ “ PrpE3|H3q|ppE1|H1q ^ pE2|H2qqs.
We distinguish the following four cases:
(i) H3 Ď E3;
(ii) H3 Ę E3 and E1|H1 Ď E3|H3;
(iii) H3 Ę E3 and E2|H2 Ď E3|H3;
(iv) H3 Ę E3 and QCpE1|H1, E2|H2q Ď E3|H3.
Case (i). If H3 Ď E3, then E3|H3 “ P pE3|H3q “ 1. We set P pEi|Hiq “ xi, PrpEi|Hiq ^

pEj |Hjqs “ xij and we recall that

maxtxi ` xj ´ 1, 0u ď xij ď mintxi, xju .

20



Then, as x3 “ 1, we obtain x13 “ x1, x23 “ x2; it follows that for the random vector
ppE1|H1q ^ pE2|H2q, pE1|H1q ^ pE2|H2q ^ pE3|H3qq the possible values are

p1, 1q , p0, 0q , px1, x1q , px2, x2q , px12, x12q , px12, x123q ,

where x123 “ PrpE1|H1q ^ pE2|H2q ^ pE3|H3qs “ µ. As we can see, conditionally on
H1 _H2 _H3 being true, pE1|H1q ^ pE2|H2q and pE1|H1q ^ pE2|H2q ^ pE3|H3q coincide;
then, by Theorem 3, x12 “ x123, so that pE1|H1q^pE2|H2q^pE3|H3q and pE1|H1q^pE2|H2q

coincide. Then, (15) is satisfied.
Case (ii). As E1|H1 Ď E3|H3, by Proposition 1 it holds that E1|H1 ^ E3|H3 “ E1|H1 and
pE1|H1q ^ pE2|H2q ^ pE3|H3q “ pE1|H1q ^ pE2|H2q. Then, (15) is satisfied.
Case (iii). As E2|H2 Ď E3|H3, by Proposition 1 it holds that E2|H2 ^E3|H3 “ E2|H2 and
pE1|H1q ^ pE2|H2q ^ pE3|H3q “ pE1|H1q ^ pE2|H2q. Then, (15) is satisfied.
Case (iv). By taking into account that QCpE1|H1, E2|H2q Ď E3|H3, the set of possible
values of the random vector

ppE1|H1q ^ pE2|H2q , QCpE1|H1, E2|H2q , pE1|H1q ^ pE2|H2q ^ pE3|H3qq,

as shown in Table 2, is

tp1, 1, 1q , p0, 0, 0q , px1, 1, x1q , px2, 1, x2q , px12, ν12, x12q , px12, ν12, x123qu,

where x1 “ P pE1|H1q, x2 “ P pE2|H2q, x12 “ P rpE1|H1q ^ pE2|H2qs,
ν12 “ P rQCpE1|H1, E2|H2qs, x123 “ PrpE1|H1q ^ pE2|H2q ^ pE3|H3qs. As we can see,
conditionally on H1 _ H2 _ H3 being true (i.e., sH1

sH2
sH3 being false), pE1|H1q ^ pE2|H2q

and pE1|H1q ^ pE2|H2q ^ pE3|H3q coincide; then, by Theorem 3 it holds that x12 “ x123,
so that pE1|H1q ^ pE2|H2q ^ pE3|H3q “ pE1|H1q ^ pE2|H2q. Then, (15) is satisfied.

Now, by using the representation (15), for the iterated conditional we obtain

pE3|H3q|ppE1|H1q ^ pE2|H2qq “

$

’

’

’

’

&

’

’

’

’

%

1, if E1H1E2H2 is true,
µ, if sE1H1 _ sE2H2 is true,
x1 ` µp1´ x1q, if sH1E2H2 is true,
x2 ` µp1´ x2q, if E1H1

sH2 is true,
x12 ` µp1´ x12q, if sH1

sH2 is true.

(16)

Moreover, by the linearity of prevision it holds that

µ “ PrpE3|H3q|ppE1|H1q ^ pE2|H2qqs “ x12 ` µp1´ x12q ;

from which it follows that x12 “ µx12. Then, (16) becomes

pE3|H3q|ppE1|H1q ^ pE2|H2qq “

$

’

’

&

’

’

%

1, if E1H1E2H2 is true,
x1 ` µp1´ x1q, if sH1E2H2 is true,
x2 ` µp1´ x2q, if E1H1

sH2 is true,
µ, if sH1

sH2 _ sE1H1 _ sE2H2 is true.
(17)

In order to prove that pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1, as already done in the proof of
Theorem 6, we distinguish the following cases: (a) x12 ą 0; (b) x12 “ x1 “ x2 “ 0; (c)
x12 “ 0, x1 ą 0, x2 ą 0; (d) x12 “ x2 “ 0, x1 ą 0; (e) x12 “ x1 “ 0, x2 ą 0.
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Ch pE1|H1q ^ pE2|H2q QCpE1|H1, E2|H2q pE1|H1q ^ pE2|H2q ^ pE3|H3q

E1H1E2H2E3H3 1 1 1
E1H1

sE2H2E3H3 0 0 0
E1H1

sE2H2
sE3H3 0 0 0

E1H1
sE2H2

sH3 0 0 0
E1H1

sH2E3H3 x2 1 x2
sE1H1E2H2E3H3 0 0 0
sE1H1E2H2

sE3H3 0 0 0
sE1H1E2H2

sH3 0 0 0
sE1H1

sE2H2E3H3 0 0 0
sE1H1

sE2H2
sE3H3 0 0 0

sE1H1
sE2H2

sH3 0 0 0
sE1H1

sH2E3H3 0 0 0
sE1H1

sH2
sE3H3 0 0 0

sE1H1
sH2

sH3 0 0 0
sH1E2H2E3H3 x1 1 x1
sH1

sE2H2E3H3 0 0 0
sH1

sE2H2
sE3H3 0 0 0

sH1
sE2H2

sH3 0 0 0
sH1

sH2E3H3 x12 ν12 x12
sH1

sH2
sH3 x12 ν12 x123

Table 2: Possible values of the random vector ppE1|H1q ^ pE2|H2q, QCpE1|H1, E2|H2q,
pE1|H1q ^ pE2|H2q ^ pE3|H3qq, under the assumption that QCpE1|H1, E2|H2q Ď E3|H3.
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Case (a). As x12 ą 0 and x12 “ µx12, it follows that µ “ 1 and then x1 ` µp1 ´ x1q “
x2 ` µp1´ x2q “ 1. Therefore, pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1.
Case (b). As x1 “ x2 “ 0, it holds that x1 ` µp1 ´ x1q “ x2 ` µp1 ´ x2q “ µ, so that
pE3|H3q|ppE1|H1q ^ pE2|H2qq P t1, µu. We observe that, based on the metaphor of the
betting scheme, µ “ PrpE3|H3q|ppE1|H1q ^ pE2|H2qqs is the amount to be paid in order to
receive 1, or µ, according to whether E1H1E2H2 is true, or false, respectively. Then, by
discarding the case where it is received back what has been paid, coherence requires that
µ “ 1. Therefore pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1.
Case (c). By coherence, µ must be a linear convex combination of the values 1, x1`µp1´x1q,
and x2 ` µp1´ x2q, that is,

µ “ λ1 ` λ2px1 ` µp1´ x1qq ` λ3px2 ` µp1´ x2qq , (18)

with λh ě 0, h “ 1, 2, 3, and λ1 ` λ2 ` λ3 “ 1. The equation (18) can be written as

µpλ1 ` λ2x1 ` λ3x2q “ λ1 ` λ2x1 ` λ3x2 ,

where λ1 ` λ2x1 ` λ3x2 ą 0; then, µ “ x1 ` µp1 ´ x1q “ x2 ` µp1 ´ x2q “ 1 and
pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1.
Case (d). As x2 “ 0, it holds that x2 ` µp1´ x2q “ µ, so that

pE3|H3q|ppE1|H1q ^ pE2|H2qq P t1, x1 ` µp1´ x1q, µu .

Then, by coherence, µ must be a linear convex combination of the values 1, x1 ` µp1´ x1q,
that is

µ “ λ1 ` λ2rx1 ` µp1´ x1qs , λ1 ` λ2 “ 1 , λ1 ě 0 , λ2 ě 0 .

It follows that µpλ1 ` λ2x1q “ λ1 ` λ2x1, with λ1 ` λ2x1 ą 0. Then, µ “ 1 and
pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1.
Case (e). As x1 “ 0, it holds that x1 ` µp1´ x1q “ µ, so that

pE3|H3q|ppE1|H1q ^ pE2|H2qq P t1, x2 ` µp1´ x2q, µu .

Then, by coherence, µ must be a linear convex combination of the values 1, x2 ` µp1´ x2q,
that is

µ “ λ1 ` λ2rx2 ` µp1´ x2qs , λ1 ` λ2 “ 1 , λ1 ě 0 , λ2 ě 0 .

It follows that µpλ1 ` λ2x2q “ λ1 ` λ2x2, with λ1 ` λ2x2 ą 0. Then, µ “ 1 and
pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1.
pðq. Assume that pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1, so that the unique coherent previ-
sion assessment on pE3|H3q|ppE1|H1q ^ pE2|H2qq is µ “ 1. From Remark 2 it holds that
x123 “ µx12 “ x12. Moreover, x123 ď x3 (Gilio & Sanfilippo, 2017, Equation (8)) and
x12 ě maxtx1 ` x2 ´ 1, 0u (see Equation (4)). Then, it holds that

maxtx1 ` x2 ´ 1, 0u ď x12 “ x123 ď x3 ,

and, when x1 “ x2 “ 1, it follows that x12 “ x123 “ x3 “ 1. Therefore, tE1|H1, E2|H2u

p-entails E3|H3.
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